Iklan

Pertanyaan

Dengan teorema limit, hitunglah : x → 3 lim ​ x 2 + 2 x − 3 ( x − 5 ) 3 ( 2 x − 9 ) ​

Dengan teorema limit, hitunglah :
 

  

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

16

:

03

:

03

Iklan

E. Lestari

Master Teacher

Mahasiswa/Alumni Universitas Sebelas Maret

Jawaban terverifikasi

Jawaban

hasildari adalah 2.

hasil dari begin mathsize 14px style limit as straight x rightwards arrow 3 of fraction numerator open parentheses straight x minus 5 close parentheses cubed open parentheses 2 straight x minus 9 close parentheses over denominator straight x squared plus 2 straight x minus 3 end fraction end style adalah 2.

Pembahasan

Ingat kembalisifat limit berikut. Dengan menggunakan konsep sifat-sifat limit kemudian dengan mensubtitusi nilai ke dalam limit fungsi tersebut. Jadi, hasildari adalah 2.

Ingat kembali sifat limit berikut.

  1. begin mathsize 14px style limit as straight x rightwards arrow straight c of open parentheses fraction numerator straight f open parentheses straight x close parentheses over denominator straight g open parentheses straight x close parentheses end fraction close parentheses equals fraction numerator limit as straight x rightwards arrow straight c of open parentheses straight f open parentheses straight x close parentheses close parentheses over denominator limit as straight x rightwards arrow straight c of open parentheses straight g open parentheses straight x close parentheses close parentheses end fraction end style 
  2. begin mathsize 14px style limit as straight x rightwards arrow straight c of open parentheses straight f open parentheses straight x close parentheses cross times straight g open parentheses straight x close parentheses close parentheses equals limit as straight x rightwards arrow straight c of open parentheses straight f open parentheses straight x close parentheses close parentheses cross times limit as straight x rightwards arrow straight c of open parentheses straight g open parentheses straight x close parentheses close parentheses end style 
  3. begin mathsize 14px style limit as straight x rightwards arrow straight c of open parentheses straight f open parentheses straight x close parentheses plus-or-minus straight g open parentheses straight x close parentheses close parentheses equals limit as straight x rightwards arrow straight c of straight f open parentheses straight x close parentheses plus-or-minus limit as straight x rightwards arrow straight c of straight g open parentheses straight x close parentheses end style
  4. begin mathsize 14px style limit as straight x rightwards arrow straight c of straight k times straight f open parentheses straight x close parentheses equals straight k times limit as straight x rightwards arrow straight c of straight f open parentheses straight x close parentheses end style
  5. begin mathsize 14px style limit as straight x rightwards arrow straight c of open parentheses straight k close parentheses equals straight k end style  

Dengan menggunakan konsep sifat-sifat limit kemudian dengan mensubtitusi nilai straight x ke dalam limit fungsi tersebut.

table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell limit as straight x rightwards arrow 3 of fraction numerator open parentheses straight x minus 5 close parentheses cubed open parentheses 2 straight x minus 9 close parentheses over denominator straight x squared plus 2 straight x minus 3 end fraction end cell row blank equals cell fraction numerator open parentheses limit as straight x rightwards arrow 3 of open parentheses straight x close parentheses minus limit as straight x rightwards arrow 3 of open parentheses 5 close parentheses close parentheses cubed cross times open parentheses 2 cross times limit as straight x rightwards arrow 3 of open parentheses straight x close parentheses minus limit as straight x rightwards arrow 3 of open parentheses 9 close parentheses close parentheses over denominator open parentheses limit as straight x rightwards arrow 3 of open parentheses straight x close parentheses close parentheses squared plus open parentheses 2 cross times limit as straight x rightwards arrow 3 of open parentheses straight x close parentheses close parentheses minus limit as straight x rightwards arrow 3 of open parentheses 3 close parentheses end fraction end cell row blank equals cell fraction numerator open parentheses 3 minus 5 close parentheses cubed cross times open parentheses open parentheses 2 straight x 3 close parentheses minus 9 close parentheses over denominator 3 squared plus open parentheses 2 cross times 3 close parentheses minus 3 end fraction end cell row blank equals cell fraction numerator open parentheses negative 8 close parentheses cross times open parentheses negative 3 close parentheses over denominator 12 end fraction end cell row blank equals 2 end table 
 

Jadi, hasil dari begin mathsize 14px style limit as straight x rightwards arrow 3 of fraction numerator open parentheses straight x minus 5 close parentheses cubed open parentheses 2 straight x minus 9 close parentheses over denominator straight x squared plus 2 straight x minus 3 end fraction end style adalah 2.

Buka akses jawaban yang telah terverifikasi

lock

Yah, akses pembahasan gratismu habis


atau

Dapatkan jawaban pertanyaanmu di AiRIS. Langsung dijawab oleh bestie pintar

Tanya Sekarang

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Tanya ke AiRIS

Yuk, cobain chat dan belajar bareng AiRIS, teman pintarmu!