Iklan

Pertanyaan

Bentuk sederhana dari ⎝ ⎛ ​ x 3 1 ​ y 3 2 ​ z 3 1 ​ x 3 2 ​ y 3 4 ​ z − 3 1 ​ ​ ⎠ ⎞ ​ 6 adalah ...

Bentuk sederhana dari  adalah ...

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

01

:

04

:

15

:

54

Klaim

Iklan

N. Puspita

Master Teacher

Jawaban terverifikasi

Pembahasan

Pembahasan
lock

Bentuk sederhanya adalah sebagai berikut: Maka, bentuk sederhana dari adalah .

Bentuk sederhanya adalah sebagai berikut:

table attributes columnalign right center left columnspacing 0px end attributes row cell open parentheses fraction numerator x to the power of begin display style 2 over 3 end style end exponent y to the power of begin display style 4 over 3 end style end exponent z to the power of negative begin display style 1 third end style end exponent over denominator x to the power of begin display style 1 third end style end exponent y to the power of begin display style 2 over 3 end style end exponent z to the power of begin display style 1 third end style end exponent end fraction close parentheses to the power of 6 end cell equals cell open parentheses fraction numerator x to the power of begin display style fraction numerator 2 cross times 6 over denominator 3 end fraction end style end exponent y to the power of begin display style fraction numerator 4 cross times 6 over denominator 3 end fraction end style end exponent z to the power of negative begin display style fraction numerator 1 cross times 6 over denominator 3 end fraction end style end exponent over denominator x to the power of begin display style fraction numerator 1 cross times 6 over denominator 3 end fraction end style end exponent y to the power of begin display style fraction numerator 2 cross times 6 over denominator 3 end fraction end style end exponent z to the power of begin display style fraction numerator 1 cross times 6 over denominator 3 end fraction end style end exponent end fraction close parentheses end cell row blank equals cell open parentheses fraction numerator x to the power of begin display style 12 over 3 end style end exponent y to the power of begin display style 24 over 3 end style end exponent z to the power of negative begin display style 6 over 3 end style end exponent over denominator x to the power of begin display style 6 over 3 end style end exponent y to the power of begin display style 12 over 3 end style end exponent z to the power of begin display style 6 over 3 end style end exponent end fraction close parentheses end cell row blank equals cell open parentheses fraction numerator x to the power of 4 y to the power of 8 z to the power of negative 2 end exponent over denominator x squared y to the power of 4 z squared end fraction close parentheses end cell row blank equals cell x to the power of 4 minus 2 end exponent y to the power of 8 minus 4 end exponent z to the power of negative 2 minus 2 end exponent end cell row blank equals cell x squared y to the power of 4 z to the power of negative 4 end exponent end cell end table

Maka, bentuk sederhana dari open parentheses fraction numerator x to the power of begin display style 2 over 3 end style end exponent y to the power of begin display style 4 over 3 end style end exponent z to the power of negative begin display style 1 third end style end exponent over denominator x to the power of begin display style 1 third end style end exponent y to the power of begin display style 2 over 3 end style end exponent z to the power of begin display style 1 third end style end exponent end fraction close parentheses to the power of 6 adalah x squared y to the power of 4 z to the power of negative 4 end exponent.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

3

Luisiana Artika putri

Mudah dimengerti

Muhammad Hafiz Reyhan

Makasih ❤️

MaelTod Tzy

Jawaban tidak sesuai

Iklan

Pertanyaan serupa

Nilai dari 2 7 − 3 4 ​ + 8 1 − 4 3 ​ 9 − 2 3 ​ × 3 + 2 7 − 1 ​ adalah ...

3

4.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02130930000

02130930000

Ikuti Kami

©2026 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia