Iklan

Pertanyaan

x → 1 lim ​ 2 + 2 x ​ − 6 − 2 x ​ x 3 − x 2 ​ = ....

 ....

  1. –2

  2. –1

  3. 0

  4. 1

  5. 2

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

01

:

03

:

02

:

39

Klaim

Iklan

D. Kamilia

Master Teacher

Mahasiswa/Alumni Universitas Negeri Malang

Jawaban terverifikasi

Pembahasan

i) Rasionalkan penyebut dari bentuk limit di atas ii) Faktorkan bentuk-bentuk yang dapat difaktorkan iii) Substitusikan x = 1ke dalam bentuk limit

i)     Rasionalkan penyebut dari bentuk limit di atas

limit as x rightwards arrow 1 of fraction numerator x cubed minus x squared over denominator square root of 2 plus 2 x end root minus square root of 6 minus 2 x end root end fraction space equals space limit as x rightwards arrow 1 of fraction numerator x cubed minus x squared over denominator square root of 2 plus 2 x end root minus square root of 6 minus 2 x end root end fraction. fraction numerator square root of 2 plus 2 x end root begin display style plus end style square root of 6 minus 2 x end root over denominator square root of 2 plus 2 x end root begin display style plus end style square root of 6 minus 2 x end root end fraction  equals space limit as x rightwards arrow 1 of fraction numerator open parentheses x cubed minus x squared close parentheses begin display style open parentheses square root of 2 plus 2 x end root plus square root of 6 minus 2 x end root close parentheses end style over denominator begin display style open parentheses square root of 2 plus 2 x end root close parentheses squared end style begin display style minus end style begin display style begin display style open parentheses square root of 6 minus 2 x end root close parentheses end style squared end style end fraction equals space limit as x rightwards arrow 1 of fraction numerator open parentheses x cubed minus x squared close parentheses begin display style open parentheses square root of 2 plus 2 x end root plus square root of 6 minus 2 x end root close parentheses end style over denominator open parentheses 2 plus 2 x close parentheses begin display style minus end style begin display style open parentheses 6 minus 2 x close parentheses end style end fraction  equals space limit as x rightwards arrow 1 of fraction numerator open parentheses x cubed minus x squared close parentheses open parentheses square root of 2 plus 2 x end root plus square root of 6 minus 2 x end root close parentheses over denominator 4 x minus 4 end fraction

ii)    Faktorkan bentuk-bentuk yang dapat difaktorkan

limit as x rightwards arrow 1 of fraction numerator open parentheses x cubed minus x squared close parentheses open parentheses square root of 2 plus 2 x end root plus square root of 6 minus 2 x end root close parentheses over denominator 4 x minus 4 end fraction space equals space limit as x rightwards arrow 1 of fraction numerator x squared open parentheses x minus 1 close parentheses open parentheses square root of 2 plus 2 x end root plus square root of 6 minus 2 x end root close parentheses over denominator 4 open parentheses x minus 1 close parentheses end fraction  equals space limit as x rightwards arrow 1 of fraction numerator begin display style x squared open parentheses square root of 2 plus 2 x end root plus square root of 6 minus 2 x end root close parentheses end style over denominator begin display style 4 end style end fraction

iii)   Substitusikan x = 1 ke dalam bentuk limit

limit as x rightwards arrow 1 of fraction numerator x squared open parentheses square root of 2 plus 2 x end root plus square root of 6 minus 2 x end root close parentheses over denominator 4 end fraction space equals space fraction numerator begin display style open parentheses 1 close parentheses squared end style begin display style open parentheses square root of 2 plus 2 open parentheses 1 close parentheses end root plus square root of 6 minus 2 open parentheses 1 close parentheses end root close parentheses end style over denominator 4 end fraction space equals space fraction numerator 1 open parentheses square root of 4 plus square root of 4 close parentheses over denominator 4 end fraction equals space 4 over 4 space equals space 1

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Laras Julyanti

Ini yang aku cari!

Amanda Deby febrina

Makasih ❤️

Dewi Septia Rani B

Pembahasan lengkap banget Ini yang aku cari! Bantu banget

Iklan

Pertanyaan serupa

Tentukan nilai dari x → − 2 lim ​ x + 2 2 x + 13 ​ − x + 11 ​ ​ .

1

4.7

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02130930000

02130930000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia