Iklan

Pertanyaan

x → 1 lim ​ 2 + 2 x ​ − 6 − 2 x ​ x 3 − x 2 ​ = ....

....

  1. -2

  2. -1

  3. 0

  4. 1

  5. 2

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

18

:

07

:

39

Klaim

Iklan

S. Lestari

Master Teacher

Jawaban terverifikasi

Jawaban

jawaban yang tepat adalah D.

jawaban yang tepat adalah D.

Pembahasan

Rasionalkan penyebut dari bentuk limit di atas Faktorkan bentuk-bentuk yang dapat difaktorkan Substitusikan x = 1 ke dalam bentuk limit Jadi, jawaban yang tepat adalah D.

Rasionalkan penyebut dari bentuk limit di atas

begin mathsize 14px style limit as x rightwards arrow 1 of invisible function application fraction numerator x cubed minus x squared over denominator square root of 2 plus 2 x end root minus square root of 6 minus 2 x end root end fraction equals limit as x rightwards arrow 1 of invisible function application fraction numerator x cubed minus x squared over denominator square root of 2 plus 2 x end root minus square root of 6 minus 2 x end root end fraction bullet fraction numerator square root of 2 plus 2 x end root plus square root of 6 minus 2 x end root over denominator square root of 2 plus 2 x end root plus square root of 6 minus 2 x end root end fraction equals limit as x rightwards arrow 1 of invisible function application fraction numerator open parentheses x cubed minus x squared close parentheses open parentheses square root of 2 plus 2 x end root plus square root of 6 minus 2 x end root close parentheses over denominator open parentheses square root of 2 plus 2 x end root close parentheses squared minus open parentheses square root of 6 minus 2 x end root close parentheses squared end fraction equals limit as x rightwards arrow 1 of invisible function application fraction numerator open parentheses x cubed minus x squared close parentheses open parentheses square root of 2 plus 2 x end root plus square root of 6 minus 2 x end root close parentheses over denominator open parentheses 2 plus 2 x close parentheses minus open parentheses 6 minus 2 x close parentheses end fraction equals limit as x rightwards arrow 1 of invisible function application fraction numerator open parentheses x cubed minus x squared close parentheses open parentheses square root of 2 plus 2 x end root plus square root of 6 minus 2 x end root close parentheses over denominator 4 x minus 4 end fraction end style

 

Faktorkan bentuk-bentuk yang dapat difaktorkan

begin mathsize 14px style limit as x rightwards arrow 1 of invisible function application fraction numerator open parentheses x cubed minus x squared close parentheses open parentheses square root of 2 plus 2 x end root plus square root of 6 minus 2 x end root close parentheses over denominator 4 x minus 4 end fraction equals limit as x rightwards arrow 1 of invisible function application fraction numerator x squared open parentheses x minus 1 close parentheses open parentheses square root of 2 plus 2 x end root plus square root of 6 minus 2 x end root close parentheses over denominator 4 open parentheses x minus 1 close parentheses end fraction equals limit as x rightwards arrow 1 of invisible function application fraction numerator x squared open parentheses square root of 2 plus 2 x end root plus square root of 6 minus 2 x end root close parentheses over denominator 4 end fraction end style

 

Substitusikan = 1 ke dalam bentuk limit

begin mathsize 14px style limit as x rightwards arrow 1 of invisible function application fraction numerator x squared open parentheses square root of 2 plus 2 x end root plus square root of 6 minus 2 x end root close parentheses over denominator 4 end fraction equals fraction numerator open parentheses 1 close parentheses squared open parentheses square root of 2 plus 2 open parentheses 1 close parentheses end root plus square root of 6 minus 2 open parentheses 1 close parentheses end root close parentheses over denominator 4 end fraction equals fraction numerator 1 open parentheses square root of 4 plus square root of 4 close parentheses over denominator 4 end fraction equals 4 over 4 equals 1 end style   

Jadi, jawaban yang tepat adalah D.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

5

Iklan

Pertanyaan serupa

x → 0 lim ​ 1 − cos x x x + 4 ​ − 2 ​ = …

1

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02130930000

02130930000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia