Hai Dini, jawaban yang benar adalah (f ∘ g)(0) = 56 dan (g ∘ f)(-5) = 3.131.
Pembahasan:
Asumsikan soalnya adalah
f(x) = 2x² - x + 1
g(x) = x² - 5
Ingat bahwa
(f ∘ g)(x) = f(g(x))
(g ∘ f)(x) = g(f(x))
Sehingga
(f ∘ g)(x) = f(g(x))
(f ∘ g)(x) = 2(x² - 5)² - (x² - 5) + 1
(f ∘ g)(0) = 2(0² - 5)² - (0² - 5) + 1
(f ∘ g)(0) = 2(-5)² - (- 5) + 1
(f ∘ g)(0) = 2(25) + 5 + 1
(f ∘ g)(0) = 50 + 6
(f ∘ g)(0) = 56
(g ∘ f)(x) = g(f(x))
(g ∘ f)(x) = (2x² - x + 1)² - 5
(g ∘ f)(-5) = (2(-5)² - (-5) + 1)² - 5
(g ∘ f)(-5) = (2(25) + 5 + 1)² - 5
(g ∘ f)(-5) = (50 + 6)² - 5
(g ∘ f)(-5) = (56)² - 5
(g ∘ f)(-5) = 3.136 - 5
(g ∘ f)(-5) = 3.131
Dengan demikian, diperoleh (f ∘ g)(0) = 56 dan (g ∘ f)(-5) = 3.131.
Semoga membantu yaa :)
Hai Dini, jawaban yang benar adalah (f ∘ g)(0) = 56 dan (g ∘ f)(-5) = 3.131.
Pembahasan:
Asumsikan soalnya adalah
f(x) = 2x² - x + 1
g(x) = x² - 5
Ingat bahwa
(f ∘ g)(x) = f(g(x))
(g ∘ f)(x) = g(f(x))
Sehingga
(f ∘ g)(x) = f(g(x))
(f ∘ g)(x) = 2(x² - 5)² - (x² - 5) + 1
(f ∘ g)(0) = 2(0² - 5)² - (0² - 5) + 1
(f ∘ g)(0) = 2(-5)² - (- 5) + 1
(f ∘ g)(0) = 2(25) + 5 + 1
(f ∘ g)(0) = 50 + 6
(f ∘ g)(0) = 56
(g ∘ f)(x) = g(f(x))
(g ∘ f)(x) = (2x² - x + 1)² - 5
(g ∘ f)(-5) = (2(-5)² - (-5) + 1)² - 5
(g ∘ f)(-5) = (2(25) + 5 + 1)² - 5
(g ∘ f)(-5) = (50 + 6)² - 5
(g ∘ f)(-5) = (56)² - 5
(g ∘ f)(-5) = 3.136 - 5
(g ∘ f)(-5) = 3.131
Dengan demikian, diperoleh (f ∘ g)(0) = 56 dan (g ∘ f)(-5) = 3.131.
Semoga membantu yaa :)