Iklan

Pertanyaan

Untuk A , B , dan X matriks berordo 2 × 2 . Buktikan bahwa: ( k A ) − 1 = k 1 ​ ⋅ A − 1 , k bilangan bulat positif

Untuk , dan  matriks berordo .

Buktikan bahwa:  bilangan bulat positif 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

01

:

15

:

25

:

33

Klaim

Iklan

A. Septianingsih

Master Teacher

Mahasiswa/Alumni Universitas Gadjah Mada

Jawaban terverifikasi

Pembahasan

Misal space straight A equals open parentheses table row straight a straight b row straight c straight d end table close parentheses 

table attributes columnalign right center left columnspacing 0px end attributes row cell open parentheses kA close parentheses to the power of negative 1 end exponent end cell equals cell 1 over straight k straight A to the power of negative 1 end exponent end cell row cell open square brackets straight k. open parentheses table row straight a straight b row straight c straight d end table close parentheses close square brackets to the power of negative 1 end exponent end cell equals cell 1 over straight k. fraction numerator 1 over denominator ad minus bc end fraction open parentheses table row straight d cell negative straight b end cell row cell negative straight c end cell straight a end table close parentheses end cell row cell open square brackets open parentheses table row ak bk row ck dk end table close parentheses close square brackets to the power of negative 1 end exponent end cell equals cell fraction numerator 1 over denominator straight k left parenthesis ad minus bc right parenthesis end fraction open parentheses table row straight d cell negative straight b end cell row cell negative straight c end cell straight a end table close parentheses end cell row cell fraction numerator 1 over denominator adk squared minus bck squared end fraction open parentheses table row dk cell negative bk end cell row cell negative ck end cell ak end table close parentheses end cell equals cell fraction numerator 1 over denominator straight k left parenthesis ad minus bc right parenthesis end fraction open parentheses table row straight d cell negative straight b end cell row cell negative straight c end cell straight a end table close parentheses end cell row cell fraction numerator 1 over denominator straight k squared left parenthesis ad minus bc right parenthesis end fraction open parentheses table row dk cell negative bk end cell row cell negative ck end cell ak end table close parentheses end cell equals cell fraction numerator 1 over denominator straight k left parenthesis ad minus bc right parenthesis end fraction open parentheses table row straight d cell negative straight b end cell row cell negative straight c end cell straight a end table close parentheses end cell row cell fraction numerator straight k over denominator straight k squared left parenthesis ad minus bc right parenthesis end fraction open parentheses table row straight d cell negative straight b end cell row cell negative straight c end cell straight a end table close parentheses end cell equals cell fraction numerator 1 over denominator straight k left parenthesis ad minus bc right parenthesis end fraction open parentheses table row straight d cell negative straight b end cell row cell negative straight c end cell straight a end table close parentheses end cell row cell fraction numerator 1 over denominator straight k left parenthesis ad minus bc right parenthesis end fraction open parentheses table row straight d cell negative straight b end cell row cell negative straight c end cell straight a end table close parentheses end cell equals cell fraction numerator 1 over denominator straight k left parenthesis ad minus bc right parenthesis end fraction open parentheses table row straight d cell negative straight b end cell row cell negative straight c end cell straight a end table close parentheses end cell row blank blank cell left parenthesis terbukti right parenthesis end cell row blank blank blank row blank blank blank end table 

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

31

Iklan

Pertanyaan serupa

Diberikan matriks A = ( 1 2 ​ 2 3 ​ ) . Tentukan A + k A − 1 .

1

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia