Iklan

Pertanyaan

Nilai dari x → ∞ lim ​ x − 1 x 2 ​ adalah ....

Nilai dari  adalah ....

  1. begin mathsize 14px style infinity end style 

  2. undefined 

  3. begin mathsize 14px style 1 end style  

  4. begin mathsize 14px style negative 2 end style   

  5. begin mathsize 14px style negative infinity end style 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

08

:

09

:

03

Klaim

Iklan

N. Mustikowati

Master Teacher

Mahasiswa/Alumni Universitas Negeri Jakarta

Jawaban terverifikasi

Jawaban

jawaban yang tepat adalah A.

jawaban yang tepat adalah A.

Pembahasan

Perhatikan bahwa Perhatikan bahwa apabila nilai x semakin besar menuju tak hingga, maka nilai x ditambah 1 juga akan menuju tak hingga. Oleh karena itu, Jadi, jawaban yang tepat adalah A.

Perhatikan bahwa

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell limit as x rightwards arrow straight infinity of invisible function application fraction numerator x squared over denominator x minus 1 end fraction end cell equals cell limit as x rightwards arrow straight infinity of invisible function application fraction numerator x squared minus x plus x over denominator x minus 1 end fraction end cell row blank equals cell limit as x rightwards arrow straight infinity of invisible function application open parentheses fraction numerator x squared minus x over denominator x minus 1 end fraction plus fraction numerator x over denominator x minus 1 end fraction close parentheses end cell row blank equals cell limit as x rightwards arrow straight infinity of invisible function application fraction numerator x squared minus x over denominator x minus 1 end fraction plus limit as x rightwards arrow straight infinity of invisible function application fraction numerator x over denominator x minus 1 end fraction end cell row blank equals cell limit as x rightwards arrow straight infinity of invisible function application fraction numerator x up diagonal strike open parentheses x minus 1 close parentheses end strike over denominator up diagonal strike x minus 1 end strike end fraction plus limit as x rightwards arrow straight infinity of invisible function application fraction numerator x over denominator x minus 1 end fraction end cell row blank equals cell limit as x rightwards arrow straight infinity of invisible function application x plus limit as x rightwards arrow straight infinity of invisible function application open parentheses fraction numerator x over denominator x minus 1 end fraction times fraction numerator 1 over x over denominator 1 over x end fraction close parentheses end cell row blank equals cell limit as x rightwards arrow straight infinity of invisible function application x plus limit as x rightwards arrow straight infinity of invisible function application fraction numerator 1 over denominator 1 minus 1 over x end fraction end cell row blank equals cell limit as x rightwards arrow straight infinity of invisible function application x plus fraction numerator 1 over denominator 1 minus 0 end fraction end cell row blank equals cell limit as x rightwards arrow straight infinity of invisible function application x plus 1 end cell row blank blank blank end table end style                  

Perhatikan bahwa apabila nilai x semakin besar menuju tak hingga, maka nilai x ditambah 1 juga akan menuju tak hingga. Oleh karena itu,

begin mathsize 14px style limit as x rightwards arrow straight infinity of invisible function application fraction numerator x squared over denominator x minus 1 end fraction equals limit as x rightwards arrow straight infinity of invisible function application x plus 1 equals infinity end style 

Jadi, jawaban yang tepat adalah A.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Muhammad Raihan Alby Arifin

kurang tepat tapi mantap 🦆👌🏻

Esrina Maddus

Jawaban tidak sesuai

Iklan

Pertanyaan serupa

Nilai dari x → ∞ lim ​ 2 x + 7 6 x ​ adalah ....

1

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia