Iklan

Pertanyaan

Dengan menggunakan limit jumlah Riemann, luas daerah yang dibatasi oleh kurva f ( x ) = x 2 + 1 dan sumbu x pada interval − 1 ≤ x ≤ 3 adalah .…

Dengan menggunakan limit jumlah Riemann, luas daerah yang dibatasi oleh kurva  dan sumbu x pada interval  adalah .…

  1. 38 over 3

  2. 40 over 3

  3. 41 over 3

  4. 43 over 3

  5. 47 over 3

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

21

:

59

:

11

Klaim

Iklan

I. Roy

Master Teacher

Mahasiswa/Alumni Universitas Negeri Surabaya

Jawaban terverifikasi

Pembahasan

increment x equals fraction numerator b minus a over denominator n end fraction equals fraction numerator 3 plus 1 over denominator n end fraction equals 4 over n x subscript 0 equals negative 1 x subscript i equals x subscript 0 plus i. increment x equals negative 1 plus i.4 over n equals negative 1 plus 4 over n space i  f left parenthesis x right parenthesis equals x squared plus 1 space m a k a f open parentheses x subscript i close parentheses equals x subscript i squared plus 1 equals open parentheses negative 1 plus 4 over n space i close parentheses squared plus 1 space space space space space space space equals 1 minus 8 over n space i plus 16 over n squared space i squared plus 1 space space space space space space space equals 16 over n squared space i squared minus 8 over n space i plus 2

 

table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell sum from i equals 1 to n of f open parentheses x subscript i close parentheses space increment x end cell row blank equals cell sum from i equals 1 to n of open parentheses 16 over n squared space i squared minus 8 over n space i plus 2 close parentheses 4 over n end cell row blank equals cell 4 over n sum from i equals 1 to n of open parentheses 16 over n squared space i squared minus 8 over n space i plus 2 close parentheses end cell row blank equals cell 4 over n open parentheses sum from i equals 1 to n of 16 over n squared space i squared minus sum from i equals 1 to n of 8 over n space i plus sum from i equals 1 to n of 2 close parentheses end cell row blank equals cell 4 over n sum from i equals 1 to n of 16 over n squared space i squared space minus space 4 over n sum from i equals 1 to n of 8 over n space i space plus space 4 over n sum from i equals 1 to n of 2 end cell row blank equals cell 64 over n cubed sum from i equals 1 to n of space i squared minus space 32 over n squared sum from i equals 1 to n of space i space plus space 8 over n sum from i equals 1 to n of 1 end cell row blank equals cell open parentheses 64 over n cubed close parentheses open parentheses fraction numerator n left parenthesis n plus 1 right parenthesis left parenthesis 2 n plus 1 right parenthesis over denominator 6 end fraction close parentheses end cell row blank blank cell negative space open parentheses 32 over n squared close parentheses open parentheses fraction numerator n left parenthesis n plus 1 right parenthesis over denominator 2 end fraction close parentheses space plus space open parentheses 8 over n close parentheses n end cell row blank equals cell fraction numerator 32 open parentheses 2 n squared plus 3 n plus 1 close parentheses over denominator 3 n squared end fraction minus fraction numerator 16 left parenthesis n plus 1 right parenthesis over denominator n end fraction plus 8 end cell row blank equals cell 64 over 3 plus 32 over n plus fraction numerator 32 over denominator 3 n squared end fraction minus 16 minus 16 over n plus 8 end cell row blank equals cell 40 over 3 plus 16 over n plus fraction numerator 32 over denominator 3 n squared end fraction end cell row L equals cell limit as n rightwards arrow infinity of open parentheses 40 over 3 plus 16 over n plus fraction numerator 32 over denominator 3 n squared end fraction close parentheses equals 40 over 3 end cell end table

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

4

Iklan

Pertanyaan serupa

Luas daerah yang dibatasi oleh y = x + 5dan sumbu-x diantara x = 0 dan x = 5 dengan aproksimasi 5 persegi panjang adalah .…

20

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02130930000

02130930000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia