Iklan

Iklan

Pertanyaan

x → 0 lim ​ tan 2 x + sin x x + sin 2 x + sin 3 x ​ = ...

     

  1.  2 

  2.  1  

  3.  0 comma 5  

  4.  0 comma 25   

  5. 0    

Iklan

P. Anggrayni

Master Teacher

Jawaban terverifikasi

Iklan

Pembahasan

Ingat kembalisifat limit dan limit fungsi trigonometri berikut. Dari aturan di atas, maka diperoleh Dengan demikian, . Jadi, jawaban yang benar adalah A.

Ingat kembali sifat limit dan limit fungsi trigonometri berikut.

  • limit as x rightwards arrow c of fraction numerator f left parenthesis x right parenthesis over denominator g left parenthesis x right parenthesis end fraction equals fraction numerator limit as x rightwards arrow c of space f left parenthesis x right parenthesis over denominator limit as x rightwards arrow c of space g left parenthesis x right parenthesis end fraction
     
  • stack lim space left square bracket with x rightwards arrow c below f left parenthesis x right parenthesis plus g left parenthesis x right parenthesis right square bracket equals limit as x rightwards arrow c of space f left parenthesis x right parenthesis plus limit as x rightwards arrow c of space g left parenthesis x right parenthesis
     
  • limit as x rightwards arrow 0 of fraction numerator sin space a x over denominator b x end fraction equals a over b
     
  • limit as x rightwards arrow 0 of fraction numerator tan space a x over denominator b x end fraction equals a over b

Dari aturan di atas, maka diperoleh

begin mathsize 12px style table attributes columnalign right center left columnspacing 0px end attributes row cell limit as x rightwards arrow 0 of fraction numerator x plus sin space 2 x plus sin space 3 x over denominator tan space 2 x plus sin space x end fraction end cell equals cell limit as x rightwards arrow 0 of fraction numerator open parentheses x plus sin space 2 x plus sin space 3 x close parentheses over denominator open parentheses tan space 2 x plus sin space x close parentheses end fraction times fraction numerator begin display style 1 over x end style over denominator begin display style 1 over x end style end fraction end cell row blank equals cell limit as x rightwards arrow 0 of fraction numerator begin display style x over x end style plus begin display style fraction numerator sin space 2 x over denominator x end fraction end style plus begin display style fraction numerator sin space 3 x over denominator x end fraction end style over denominator begin display style fraction numerator tan space 2 x over denominator x end fraction end style plus begin display style fraction numerator sin space x over denominator x end fraction end style end fraction end cell row blank equals cell fraction numerator begin display style limit as x rightwards arrow 0 of open parentheses space x over x plus fraction numerator sin space 2 x over denominator x end fraction plus fraction numerator sin space 3 x over denominator x end fraction close parentheses end style over denominator begin display style limit as x rightwards arrow 0 of space open parentheses fraction numerator tan space 2 x over denominator x end fraction plus fraction numerator sin space x over denominator x end fraction close parentheses end style end fraction end cell row blank equals cell fraction numerator begin display style limit as x rightwards arrow 0 of space x over x plus limit as x rightwards arrow 0 of fraction numerator sin space 2 x over denominator x end fraction plus limit as x rightwards arrow 0 of fraction numerator sin space 3 x over denominator x end fraction end style over denominator begin display style limit as x rightwards arrow 0 of space fraction numerator tan space 2 x over denominator x end fraction plus limit as x rightwards arrow 0 of fraction numerator sin space x over denominator x end fraction end style end fraction end cell row blank equals cell fraction numerator 1 plus 2 plus 3 over denominator 2 plus 1 end fraction end cell row blank equals cell 6 over 3 end cell row blank equals 2 end table end style       

Dengan demikian, limit as x rightwards arrow 0 of fraction numerator x plus sin space 2 x plus sin space 3 x over denominator tan space 2 x plus sin space x end fraction equals 2.

Jadi, jawaban yang benar adalah A.

 

Latihan Bab

Konsep Kilat

Limit Fungsi Trigonometri

Limit Tak Hingga

Kekontinuan dan Asimtot

96

Iklan

Iklan

Pertanyaan serupa

x → 0 lim ​ x + sin 5 x tan 2 x + sin x ​ = ...

56

5.0

Jawaban terverifikasi

Iklan

Iklan

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Fitur Roboguru

Topik Roboguru

Hubungi Kami

Ruangguru WhatsApp

081578200000

Email info@ruangguru.com

info@ruangguru.com

Contact 02140008000

02140008000

Ikuti Kami

©2022 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia