Iklan

Pertanyaan

∫ sec n d x = n − 1 tan x sec n − 2 x ​ + n − 1 n − 2 ​ ∫ sec n − 2 d x ( n  = 1 )

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

06

:

02

:

27

Klaim

Iklan

N. Puspita

Master Teacher

Jawaban terverifikasi

Jawaban

terbukti bahwa

terbukti bahwa undefined

Pembahasan

Pembahasan
lock

Akan dibuktikan bahwa . Jika diasumsikan bahwa , maka bentuk dapat ditulis menjadi Maka dapat diaplikasikan teknik integral parsial dengan: menggunankan didapat Ingat, . Jadi: pindah ruas didapat Jadi, terbukti bahwa

Akan dibuktikan bahwa begin mathsize 14px style integral s e c to the power of n space x space d x equals fraction numerator tan space x space s e c to the power of n minus 2 end exponent space x over denominator n minus 1 end fraction plus fraction numerator n minus 2 over denominator n minus 1 end fraction integral s e c to the power of n minus 2 end exponent space x space d x space left parenthesis n not equal to 1 right parenthesis end style.
 

Jika diasumsikan bahwa begin mathsize 14px style n greater than 2 end style, maka bentuk begin mathsize 14px style integral sec to the power of n space x space d x end style dapat ditulis menjadi
 

begin mathsize 14px style integral sec to the power of n space x space d x equals integral sec to the power of n minus 2 end exponent space x space sec space x space d x end style
 

Maka dapat diaplikasikan teknik integral parsial dengan:
 

begin mathsize 14px style open curly brackets table attributes columnalign left end attributes row cell u equals s e c to the power of n minus 2 end exponent space x rightwards double arrow d u equals left parenthesis n minus 2 right parenthesis space s e c to the power of n minus 3 end exponent x space s e c space x space tan space x space d x end cell row cell d v equals s e c squared x space d x rightwards double arrow v equals tan space x end cell end table close end style
 

begin mathsize 14px style integral u space d v equals u v minus integral v space d u end style

begin mathsize 14px style integral s e c to the power of n minus 2 end exponent space x space s e c space x space d x equals left parenthesis s e c to the power of n minus 2 end exponent space x right parenthesis left parenthesis space tan space x right parenthesis minus integral tan x space left parenthesis left parenthesis n minus 2 right parenthesis space s e c to the power of n minus 3 end exponent space x space s e c space x space tan space x right parenthesis space d x end style
 

menggunankan begin mathsize 14px style 1 plus tan squared space x equals space s e c squared space x end style didapat
 

begin mathsize 14px style integral s e c to the power of n minus 2 end exponent space x space s e c space d x equals tan space x space s e c to the power of n minus 2 end exponent space x space minus left parenthesis n minus 2 right parenthesis integral left parenthesis s e c squared space x minus 1 right parenthesis space s e c to the power of n minus 2 end exponent space x space d x equals tan space x space s e c to the power of n minus 2 end exponent space x space minus left parenthesis n minus 2 right parenthesis integral s e c to the power of n space x minus s e c to the power of n minus 2 end exponent space x space d x equals tan space x space s e c to the power of n minus 2 end exponent space x space minus left parenthesis n minus 2 right parenthesis integral s e c to the power of n space x space d x plus left parenthesis n minus 2 right parenthesis integral s e c to the power of n minus 2 end exponent space x space d x end style
 

Ingat, begin mathsize 14px style integral s e c to the power of n space x space d x equals integral s e c to the power of n minus 2 end exponent space x space s e c space x space d x end style. Jadi:
 

begin mathsize 14px style integral s e c to the power of n space d x equals tan space x space s e c to the power of n minus 2 end exponent space x minus left parenthesis n minus 2 right parenthesis integral s e c to the power of n space x space d x plus left parenthesis n minus 2 right parenthesis integral s e c to the power of n minus 2 end exponent space x space d x end style
 

pindah ruas begin mathsize 14px style left parenthesis n minus 2 right parenthesis integral s e c to the power of n space x space d x end style didapat
 

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell integral s e c to the power of n space d x plus open parentheses n minus 2 close parentheses integral s e c to the power of n space x space d x end cell equals cell tan space x space s e c to the power of n minus 2 end exponent space x plus left parenthesis n minus 2 right parenthesis integral s e c to the power of n minus 2 end exponent space x space d x end cell row cell integral s e c to the power of n space x space d x times left parenthesis 1 plus left parenthesis n minus 2 right parenthesis right parenthesis end cell equals cell tan space x space s e c to the power of n minus 2 end exponent space x plus left parenthesis n minus 2 right parenthesis integral s e c to the power of n minus 2 end exponent space x space d x end cell row cell integral s e c to the power of n space x space d x times left parenthesis n minus 1 right parenthesis end cell equals cell tan space x space s e c to the power of n minus 2 end exponent space x plus left parenthesis n minus 2 right parenthesis integral s e c to the power of n minus 2 end exponent space x space d x end cell row cell integral s e c to the power of n space x space d x end cell equals cell fraction numerator tan space x space s e c to the power of n minus 2 end exponent space x plus left parenthesis n minus 2 right parenthesis integral s e c to the power of n minus 2 end exponent space x space d x over denominator left parenthesis n minus 1 right parenthesis end fraction end cell row cell integral s e c to the power of n space x space d x end cell equals cell fraction numerator tan space x space s e c to the power of n minus 2 end exponent space x over denominator n minus 1 end fraction plus fraction numerator left parenthesis n minus 2 right parenthesis integral s e c to the power of n minus 2 end exponent space x space d x over denominator n minus 1 end fraction end cell row cell integral s e c to the power of n space x space d x end cell equals cell fraction numerator tan space x space s e c to the power of n minus 2 end exponent space x over denominator n minus 1 end fraction plus fraction numerator left parenthesis n minus 2 right parenthesis over denominator n minus 1 end fraction integral s e c to the power of n minus 2 end exponent space x space d x space left parenthesis n not equal to 1 right parenthesis end cell end table end style
 

Jadi, terbukti bahwa undefined

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

integral open parentheses 2 sec squared x minus square root of x close parentheses d x equals horizontal ellipsis

1

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia