Indah S

23 Februari 2020 05:58

Pertanyaan

tentukan titik belok dari f(x)=1/2 sin x pada interval [0,2π]


15

1

Jawaban terverifikasi

G. Albiah

Mahasiswa/Alumni Universitas Galuh Ciamis

14 Februari 2022 17:08

Jawaban terverifikasi

Halo Indah, jawaban untuk soal ini adalah (0,0), (π,0) dan (2π,0). Soal tersebut merupakan materi aplikasi turunan yaitu titik belok. Titik belok adalah suatu titik pada kurva yang berubah tanda (dari positif menjadi negatif atau dari negatif menjadi positif). Perhatikan perhitungan berikut ya. Ingat! Untuk mencari titik belok fungsi adalah dengan mencari turunan kedua dari persamaan fungsi. Turunan sin 𝑥 = cos 𝑥 Turunan cos 𝑥 = - sin 𝑥 Persamaan trigonometri Diketahui, f (𝑥) = 1/2 sin 𝑥 Interval [0, 2π] Ditanyakan, Titik belok Dijawab, f (𝑥) = 1/2 sin 𝑥 Turunan pertama : y' = 1/2 cos 𝑥 Turunan kedua : y'' = - 1/2 sin 𝑥 Untuk mencari titik belok y'' = 0 y'' = - 1/2 sin 𝑥 - 1/2 sin 𝑥 = 0 sin 𝑥 = 0 · - 1/2 sin 𝑥 = 0 sin 𝑥 = 0°, 180 °, 360 ° subtitusi ke fungsi f (𝑥) = 1/2 sin 𝑥 sin 𝑥 = 0° f (0) = 1/2 sin 0° = 0 (0,0) sin 𝑥 = 180° f (0) = 1/2 sin 180° = 1/2 (0) = 0 (180°,0) = (π,0) sin 𝑥 = 360° f (0) = 1/2 sin 360° = 1/2 (0) = 0 (360°,0) = (2π,0) Sehingga dapat disimpulkan bahwa, titik belok fungsi f (𝑥) = 1/2 sin 𝑥 pada interval [0, 2π] adalah (0,0), (π,0) dan (2π,0). Terima kasih sudah bertanya, semoga bermanfaat. Terus gunakan Roboguru sebagai teman belajar kamu ya😊


Iklan

Mau pemahaman lebih dalam untuk soal ini?

Tanya ke Forum

Tanya ke Forum

Roboguru Plus

Chat Tutor

Pertanyaan serupa

²log3=a ³log5=b. nilai ³log 15 adalah

45

0.0

Jawaban terverifikasi

Iklan