Perada E

26 Februari 2023 11:39

Iklan

Perada E

26 Februari 2023 11:39

Pertanyaan

Jika (3x² - x + 2)/[x(x² - 3)] ≡ [(A/x) + (B/(x + 1)) + (C/(x - 1))] nilai A + B + C sama dengan .... A. 0 B. 3 C. 6 D. 5 E. 12

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

01

:

16

:

33

:

33

Klaim

1

1

Jawaban terverifikasi

Iklan

L. Nikmah

Mahasiswa/Alumni Universitas Pendidikan Indonesia

08 Maret 2023 01:16

Jawaban terverifikasi

<p>Jawaban : &nbsp;B. 3.</p><p>&nbsp;</p><p>Ingat!<br>Jika (ax²+bx+c) /d = (ex²+fx+g)/d<br>Maka a=e, b=f, c=g.</p><p>x²-y² =(x-y) (x+y).<br>(a+b) (c+d) = ac +ad + bc + bd.</p><p>&nbsp;</p><p><strong>Asumsikan (3x² - x + 2)/[x(x² - 1)] ≡ [(A/x) + (B/(x + 1)) + (C/(x - 1))].</strong></p><p>&nbsp;</p><p>Perhatikan.</p><p>(3x² - x + 2)/[x(x² - 1)] ≡ [(A/x) + (B/(x + 1)) + (C/(x - 1))]</p><p>(3x² - x + 2)/[x(x² - 1)] ≡ [A(x + 1)(x - 1)]/[x(x + 1)(x - 1)] + [Bx(x - 1)]/[x(x + 1)(x - 1)] + [Cx(x + 1)]/[x(x + 1)(x - 1)]</p><p>(3x² - x + 2)/[x(x² - 1)] ≡ [A(x² - 1)]/[x(x² - 1)] + [B(x² - x)]/[x(x² - 1)] + [C(x² + x)]/[x(x² - 1)]</p><p>(3x² - x + 2)/[x(x² - 1)] ≡ [Ax² - A]/[x(x² - 1)] + [Bx² - Bx]/[x(x² - 1)] + [Cx² + Cx]/[x(x² - 1)]</p><p>(3x² - x + 2)/[x(x² - 1)] ≡ [(Ax² - A) + (Bx² - Bx) + (Cx² + Cx)]/[x(x² - 1)]</p><p>(3x² - x + 2)/[x(x² - 1)] ≡ [Ax² - A + Bx² - Bx + Cx² + Cx]/[x(x² - 1)]</p><p>(3x² - x + 2)/[x(x² - 1)] ≡ [Ax² + Bx² + Cx² - Bx + Cx - A]/[x(x² - 1)]</p><p>(3x² - x + 2)/[x(x² - 1)] ≡ [(A + B + C)x² - (B - C)x - A]/[x(x² - 1)]</p><p>Diperoleh</p><p>3x² = (A + B + C)x²</p><p>A + B + C = 3 .....(1)</p><p>&nbsp;</p><p>- x = - (B - C)x</p><p>B - C = 1 .....(2)</p><p>&nbsp;</p><p>2 = -A</p><p>A = -2 .....(3)</p><p>&nbsp;</p><p>Substitusi A = -2 ke A + B + C = 3.</p><p>-2 + B + C = 3</p><p>B + C = 3+2</p><p>B + C = 5 .....(4)</p><p>&nbsp;</p><p>Eliminasi C pada persamaan (2) dan (4)<br>B - C = 1<br>B + C = 5<br>_________+<br>2B = 6</p><p>B = 6/2</p><p>B = 3</p><p>&nbsp;</p><p>Substitusi B = 3 ke B - C = 1.<br>3 - C = 1</p><p>-C = 1-3</p><p>-C = -2</p><p>C = -2/-1</p><p>C = 2</p><p>&nbsp;</p><p>Nilai A = -2, B = 3 dan C = 2, sehingga A + B + C = -2 + 3 + 2 = 3.</p><p>&nbsp;</p><p>Jadi, jawaban yang benar adalah B. 3.</p>

Jawaban :  B. 3.

 

Ingat!
Jika (ax²+bx+c) /d = (ex²+fx+g)/d
Maka a=e, b=f, c=g.

x²-y² =(x-y) (x+y).
(a+b) (c+d) = ac +ad + bc + bd.

 

Asumsikan (3x² - x + 2)/[x(x² - 1)] ≡ [(A/x) + (B/(x + 1)) + (C/(x - 1))].

 

Perhatikan.

(3x² - x + 2)/[x(x² - 1)] ≡ [(A/x) + (B/(x + 1)) + (C/(x - 1))]

(3x² - x + 2)/[x(x² - 1)] ≡ [A(x + 1)(x - 1)]/[x(x + 1)(x - 1)] + [Bx(x - 1)]/[x(x + 1)(x - 1)] + [Cx(x + 1)]/[x(x + 1)(x - 1)]

(3x² - x + 2)/[x(x² - 1)] ≡ [A(x² - 1)]/[x(x² - 1)] + [B(x² - x)]/[x(x² - 1)] + [C(x² + x)]/[x(x² - 1)]

(3x² - x + 2)/[x(x² - 1)] ≡ [Ax² - A]/[x(x² - 1)] + [Bx² - Bx]/[x(x² - 1)] + [Cx² + Cx]/[x(x² - 1)]

(3x² - x + 2)/[x(x² - 1)] ≡ [(Ax² - A) + (Bx² - Bx) + (Cx² + Cx)]/[x(x² - 1)]

(3x² - x + 2)/[x(x² - 1)] ≡ [Ax² - A + Bx² - Bx + Cx² + Cx]/[x(x² - 1)]

(3x² - x + 2)/[x(x² - 1)] ≡ [Ax² + Bx² + Cx² - Bx + Cx - A]/[x(x² - 1)]

(3x² - x + 2)/[x(x² - 1)] ≡ [(A + B + C)x² - (B - C)x - A]/[x(x² - 1)]

Diperoleh

3x² = (A + B + C)x²

A + B + C = 3 .....(1)

 

- x = - (B - C)x

B - C = 1 .....(2)

 

2 = -A

A = -2 .....(3)

 

Substitusi A = -2 ke A + B + C = 3.

-2 + B + C = 3

B + C = 3+2

B + C = 5 .....(4)

 

Eliminasi C pada persamaan (2) dan (4)
B - C = 1
B + C = 5
_________+
2B = 6

B = 6/2

B = 3

 

Substitusi B = 3 ke B - C = 1.
3 - C = 1

-C = 1-3

-C = -2

C = -2/-1

C = 2

 

Nilai A = -2, B = 3 dan C = 2, sehingga A + B + C = -2 + 3 + 2 = 3.

 

Jadi, jawaban yang benar adalah B. 3.


Iklan

Mau pemahaman lebih dalam untuk soal ini?

Tanya ke Forum

Biar Robosquad lain yang jawab soal kamu

Tanya ke Forum

LATIHAN SOAL GRATIS!

Drill Soal

Latihan soal sesuai topik yang kamu mau untuk persiapan ujian

Cobain Drill Soal

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

Pertanyaan serupa

Nilai dari |−7+4|=… A. 3 B. −3 C. 11 D. −4 E. 4

188

5.0

Jawaban terverifikasi