Skylar A

22 Juni 2022 10:48

Iklan

Skylar A

22 Juni 2022 10:48

Pertanyaan

Dua garis yang saling tegak lurus menyinggung elips 2x² + 3y² + 4x – 12y – 36 = 0. Jika salah satu garis mempunyai kemiringan –(3/2). Tentukan titik potong kedua garis singgung.

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

18

:

19

:

44

Klaim

3

1

Jawaban terverifikasi

Iklan

G. Widosamodra

Mahasiswa/Alumni Universitas Brawijaya

10 Agustus 2022 00:10

Jawaban terverifikasi

Jawaban : (–1 ± (5/13)√(57) ± (10/13)√(10), 2 ± (10/39)√(57) ± (20/39)√(10) ± (65/39)√(10)) Pembahasan : Konsep : Persamaan elips : (x-p)²/a² + (y-q)²/b² = 1 dimana (p, q) adalah pusat Persamaan garis singgung elips: (y - q) = m(x - p) ± √(a²m²+b²) 2x² + 3y² + 4x – 12y – 36 = 0 2x² + 4x + 2 + 3y² – 12y + 12 – 36 – 2 – 12 = 0 2(x² + 2x + 1) + 3(y² – 4y + 4) – 50 = 0 2(x + 1)² + 3(y – 2)² = 50 (bagi 50) (x + 1)²/(50/2) + (y – 2)²/(50/3) = 1 50/2 > 50/3 maka p = -1 q = 2 a² = (50/2) >> a = √(50/2) b² = (50/3) >> b = √(50/3) persamaan garis singgung : (y - q) = m(x - p) ± √(a²m²+b²) (y - 2) = m(x - (-1)) ± √((50/2)m²+50/3) (y - 2) = m(x + 1) ± √((50/2)m²+50/3) .......................... (0) Dua garis yang saling tegak lurus menyinggung elips. Salah satu garis mempunyai kemiringan –(3/2) m1 = –(3/2) ............................... (1) tegak lurus maka m1.m2 = –1 m2 = –1/m1 m2 = –1/(–(3/2)) m2 = (2/3) ............................... (2) substitusi (1) ke (0) (y – 2) = –(3/2)(x + 1) ± √((50/2)(–(3/2))²+50/3) (y – 2) = –(3/2)(x + 1) ± √((50/2)(9/4)+50/3) (y – 2) = –(3/2)(x + 1) ± √(225/4+50/3) (y – 2) = –(3/2)(x + 1) ± √(675/12+200/12) (y – 2) = –(3/2)(x + 1) ± √(475/12) (y – 2) = –(3/2)(x + 1) ± √(5700/144) (y – 2) = –(3/2)(x + 1) ± √(57(100/144)) (y – 2) = –(3/2)(x + 1) ± (10/12)√(57) (y – 2) = –(3/2)(x + 1) ± (5/6)√(57) ................. (3) substitusi (2) ke (0) (y – 2) = (2/3)(x + 1) ± √((50/2)(2/3)²+50/3) (y – 2) = (2/3)(x + 1) ± √((50/2)(4/9)+50/3) (y – 2) = (2/3)(x + 1) ± √(100/9+150/9) (y – 2) = (2/3)(x + 1) ± √(250/9) (y – 2) = (2/3)(x + 1) ± √(10(25/9)) (y – 2) = (2/3)(x + 1) ± (5/3)√(10) ................. (4) (3) dan (4) (y – 2) = (y – 2) (2/3)(x + 1) ± (5/3)√(10) = –(3/2)(x + 1) ± (5/6)√(57) (2/3)(x + 1) + (3/2)(x + 1) = ± (5/6)√(57) ± (5/3)√(10) (4/6)(x + 1) + (9/6)(x + 1) = ± (5/6)√(57) ± (5/3)√(10) (13/6)(x + 1) = ± (5/6)√(57) ± (5/3)√(10) (x + 1) = (6/13)(± (5/6)√(57) ± (5/3)√(10)) (x + 1) = ± (5/13)√(57) ± (10/13)√(10) x = –1 ± (5/13)√(57) ± (10/13)√(10) .............................. (5) substitusi (5) ke (4) (y – 2) = (2/3)(x + 1) ± (5/3)√(10) (y – 2) = (2/3)(–1 ± (5/13)√(57) ± (10/13)√(10) + 1) ± (5/3)√(10) (y – 2) = (2/3)(± (5/13)√(57) ± (10/13)√(10)) ± (5/3)√(10) (y – 2) = (± (10/39)√(57) ± (20/39)√(10)) ± (5/3)√(10) (y – 2) = ± (10/39)√(57) ± (20/39)√(10) ± (65/39)√(10) y = 2 ± (10/39)√(57) ± (20/39)√(10) ± (65/39)√(10) ................ (6) Jadi, titik potongnya adalah (–1 ± (5/13)√(57) ± (10/13)√(10), 2 ± (10/39)√(57) ± (20/39)√(10) ± (65/39)√(10))


Iklan

Mau pemahaman lebih dalam untuk soal ini?

Tanya ke AiRIS

Yuk, cobain chat dan belajar bareng AiRIS, teman pintarmu!

Chat AiRIS

LATIHAN SOAL GRATIS!

Drill Soal

Latihan soal sesuai topik yang kamu mau untuk persiapan ujian

Cobain Drill Soal

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

Pertanyaan serupa

Nilai dari |−7+4|=… A. 3 B. −3 C. 11 D. −4 E. 4

180

5.0

Jawaban terverifikasi