Moeh N

20 Juli 2022 01:40

Iklan

Moeh N

20 Juli 2022 01:40

Pertanyaan

Buktikan kesamaan trigonometri berikut. sin^(2)6°+sin^(2)42°+sin^(2)66°+sin^(2)78°=9/4 Petunjuk: cos 36°=(√5+1)/2

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

09

:

40

:

12

Klaim

5

1

Jawaban terverifikasi

Iklan

C. Salsa

Mahasiswa/Alumni Universitas Gajah Mada

27 September 2022 02:39

Jawaban terverifikasi

Jawaban : terbukti bahwa sin² 6° + sin² 42° + sin² 66° + sin² 78° = 9/4. Ingat! sin² a + cos² a = 1 sin (a-b) = sin a cos b - cos a sin b sin (a+b) = sin a cos b + cos a sin b sin (-a) = - sin a cos (-a) = cos a cos 2a = 1 - 2 sin² a cos (a+b) = cos a cos b - sin a sin b cos (a-b) = cos a cos b + sin a sin b Asumsi soal: cos 36° = (√5+1)/4 Dengan menggunakan identitas trigonometri diperoleh sin² 36° + cos² 36° = 1 sin² 36° + ((√5+1)/4)² = 1 sin² 36° + (5+2√5+1)/16 = 1 sin² 36° + (6+2√5)/16 = 16/16 sin² 36° = 16/16 - (6+2√5)/16 sin² 36° = (10-2√5)/16 sin 36° = ±√[(10-2√5)/16] sin 36° = ±[√(10-2√5)]/4 Karena 36° berada di kuadran I, maka sin 36° bernilai positif, diperoleh sin 36° = [√(10-2√5)]/4 >>> sin 6° = sin (-30°+36°) = sin (-30°) cos 36° + cos (-30°) sin 36° = -1/2 • (√5+1)/4 + 1/2 √3 • [√(10-2√5)]/4 = (-√5-1)/8 + [√3•√(10-2√5)]/8 = (-√5-1)/8 + [√(30-6√5)]/8 sin² 6° = ((-√5-1)/8 + [√(30-6√5)]/8)² = ((-√5-1)/8)² + 2•(-√5-1)/8 • [√(30-6√5)]/8 + ([√(30-6√5)]/8)² = (5+2√5+1)/64 - [(2√5+2)√(30-6√5)]/8 + (30-6√5)/64 = (5+2√5+1+30-6√5)/64 - [(2√5+2)√(30-6√5)]/8 = (36-4√5)/64 - [(2√5+2)√(30-6√5)]/8 >>> cos 84° = cos (120°-36°) = cos 120° cos 36° + sin 120° sin 36° = -1/2 • (√5+1)/4 + 1/2 √3 • [√(10-2√5)]/4 = (-√5-1)/8 + [√3•√(10-2√5)]/8 = (-√5-1)/8 + [√(30-6√5)]/8 cos 84° = 1 - 2 sin² 42° (-√5-1)/8 + [√(30-6√5)]/8 = 1 - 2 sin² 42° 2 sin² 42° = 1 - {(-√5-1)/8 + [√(30-6√5)]/8} 2 sin² 42° = 8/8 + (√5+1)/8 - [√(30-6√5)]/8 2 sin² 42° = (√5+9)/8 - [√(30-6√5)]/8 sin² 42° = (√5+9)/16 - [√(30-6√5)]/16 >>> sin 66° = sin (30°+36°) = sin 30° cos 36° + cos 30° sin 36° = 1/2 • (√5+1)/4 + 1/2 √3 • [√(10-2√5)]/4 = (√5+1)/8 + [√3•√(10-2√5)]/8 = (√5+1)/8 + [√(30-6√5)]/8 sin² 66° = ((√5+1)/8 + [√(30-6√5)]/8)² = ((√5+1)/8)² + 2•(√5+1)/8 • [√(30-6√5)]/8 + ([√(30-6√5)]/8)² = (5+2√5+1)/64 + [(2√5+2)√(30-6√5)]/8 + (30-6√5)/64 = (5+2√5+1+30-6√5)/64 + [(2√5+2)√(30-6√5)]/8 = (36-4√5)/64 + [(2√5+2)√(30-6√5)]/8 >>> cos 156° = cos (120°+36°) = cos 120° cos 36° - sin 120° sin 36° = -1/2 • (√5+1)/4 - 1/2 √3 • [√(10-2√5)]/4 = (-√5-1)/8 - [√3•√(10-2√5)]/8 = (-√5-1)/8 - [√(30-6√5)]/8 cos 156° = 1 - 2 sin² 78° (-√5-1)/8 - [√(30-6√5)]/8 = 1 - 2 sin² 78° 2 sin² 78° = 1 - {(-√5-1)/8 - [√(30-6√5)]/8} 2 sin² 78° = 8/8 + (√5+1)/8 + [√(30-6√5)]/8 2 sin² 78° = (√5+9)/8 + [√(30-6√5)]/8 sin² 78° = (√5+9)/16 + [√(30-6√5)]/16 Oleh karena itu, sin² 6° + sin² 42° + sin² 66° + sin² 78° = (36-4√5)/64 - [(2√5+2)√(30-6√5)]/8 + (√5+9)/16 - [√(30-6√5)]/16 + (36-4√5)/64 + [(2√5+2)√(30-6√5)]/8 + (√5+9)/16 + [√(30-6√5)]/16 = (36-4√5)/32 + (√5+9)/8 = (36-4√5)/32 + (4√5+36)/32 = 72/32 = 9/4 Jadi, terbukti bahwa sin² 6° + sin² 42° + sin² 66° + sin² 78° = 9/4.


Naisyila K

28 September 2022 11:08

maaf kak, bukan nya harusnya cos 36°= √5 + 1 /2 ya kak ? 🙏🏻

Iklan

Mau pemahaman lebih dalam untuk soal ini?

Tanya ke AiRIS

Yuk, cobain chat dan belajar bareng AiRIS, teman pintarmu!

Chat AiRIS

LATIHAN SOAL GRATIS!

Drill Soal

Latihan soal sesuai topik yang kamu mau untuk persiapan ujian

Cobain Drill Soal

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

Pertanyaan serupa

Nilai dari |−7+4|=… A. 3 B. −3 C. 11 D. −4 E. 4

93

5.0

Jawaban terverifikasi