Atheia V

21 Agustus 2023 06:14

Iklan

Iklan

Atheia V

21 Agustus 2023 06:14

Pertanyaan

Bantu kak

Bantu kak 

 

alt

4

1

Jawaban terverifikasi

Iklan

Iklan

H. Endah

Mahasiswa/Alumni Universitas Negeri Yogyakarta

21 Agustus 2023 10:32

Jawaban terverifikasi

<p>Jawaban: Terbukti</p><p>&nbsp;</p><p>Konsep:</p><p>Langkah pembuktian dengan induksi matematika :<br>1. Dibuktikan benar untuk n = 1<br>2. Diasumsikan benar untuk n = k<br>3. Dibuktikan benar untuk n = k + 1</p><p>&nbsp;</p><p>Pembahasan:</p><p>Akan dibuktikan bahwa:</p><p>1/3 + 1/15 + 1/35 + .... + 1/((2n - 1)(2n + 1)) = n/(2n + 1)</p><p>&nbsp;</p><p>Langkahnya:</p><p>1. Dibuktikan benar untuk n = 1</p><p>1/((2(1) - 1)(2(1) + 1)) = 1/(2(1) + 1)</p><p>1/((1)(3)) = 1/(2 + 1)</p><p>1/3 = 1/3</p><p>Terbukti karena ruas kiri = ruas kanan.</p><p><br>2. Diasumsikan benar untuk n = k</p><p>1/3 + 1/15 + 1/35 + .... + 1/((2k - 1)(2k + 1)) = k/(2k + 1)</p><p>Pernyataan tersebut dianggap benar.</p><p><br>3. Dibuktikan benar untuk n = k + 1</p><p>1/3 + 1/15 + 1/35 + .... + 1/((2k - 1)(2k + 1)) + 1/((2(k + 1) - 1)(2(k + 1) + 1)) = (k + 1)/(2(k + 1) + 1)</p><p>⇔ 1/3 + 1/15 + 1/35 + .... + 1/((2k - 1)(2k + 1)) + 1/((2k + 2 - 1)(2k + 2 + 1)) = (k + 1)/(2k + 2 + 1)</p><p>⇔ <strong>1/3 + 1/15 + 1/35 + .... + 1/((2k - 1)(2k + 1)) + 1/((2k + 1)(2k + 3)) = (k + 1)/(2k + 3)</strong></p><p>&nbsp;</p><p>Akan dibuktikan untuk ruas kiri.</p><p>&nbsp;1/3 + 1/15 + 1/35 + .... + 1/((2k - 1)(2k + 1)) + 1/((2k + 1)(2k + 3))</p><p>= <strong>[1/3 + 1/15 + 1/35 + .... + 1/((2k - 1)(2k + 1))] </strong>+ 1/((2k + 1)(2k + 3))</p><p>= k/(2k + 1) + 1/((2k + 1)(2k + 3))</p><p>= (k(2k + 3) + 1)/((2k + 1)(2k + 3))</p><p>= (2k<sup>2</sup> + 3k + 1)/((2k + 1)(2k + 3))</p><p>= (<strong>(2k + 1)</strong>(k + 1))/(<strong>(2k + 1)</strong>(2k + 3))</p><p>= (k + 1)/(2k + 3) → Terbukti</p><p>&nbsp;</p><p>Jadi, dengan induksi matematika terbukti bahwa 1/3 + 1/15 + 1/35 + .... + 1/((2n - 1)(2n + 1)) = n/(2n + 1).</p>

Jawaban: Terbukti

 

Konsep:

Langkah pembuktian dengan induksi matematika :
1. Dibuktikan benar untuk n = 1
2. Diasumsikan benar untuk n = k
3. Dibuktikan benar untuk n = k + 1

 

Pembahasan:

Akan dibuktikan bahwa:

1/3 + 1/15 + 1/35 + .... + 1/((2n - 1)(2n + 1)) = n/(2n + 1)

 

Langkahnya:

1. Dibuktikan benar untuk n = 1

1/((2(1) - 1)(2(1) + 1)) = 1/(2(1) + 1)

1/((1)(3)) = 1/(2 + 1)

1/3 = 1/3

Terbukti karena ruas kiri = ruas kanan.


2. Diasumsikan benar untuk n = k

1/3 + 1/15 + 1/35 + .... + 1/((2k - 1)(2k + 1)) = k/(2k + 1)

Pernyataan tersebut dianggap benar.


3. Dibuktikan benar untuk n = k + 1

1/3 + 1/15 + 1/35 + .... + 1/((2k - 1)(2k + 1)) + 1/((2(k + 1) - 1)(2(k + 1) + 1)) = (k + 1)/(2(k + 1) + 1)

⇔ 1/3 + 1/15 + 1/35 + .... + 1/((2k - 1)(2k + 1)) + 1/((2k + 2 - 1)(2k + 2 + 1)) = (k + 1)/(2k + 2 + 1)

1/3 + 1/15 + 1/35 + .... + 1/((2k - 1)(2k + 1)) + 1/((2k + 1)(2k + 3)) = (k + 1)/(2k + 3)

 

Akan dibuktikan untuk ruas kiri.

 1/3 + 1/15 + 1/35 + .... + 1/((2k - 1)(2k + 1)) + 1/((2k + 1)(2k + 3))

= [1/3 + 1/15 + 1/35 + .... + 1/((2k - 1)(2k + 1))] + 1/((2k + 1)(2k + 3))

= k/(2k + 1) + 1/((2k + 1)(2k + 3))

= (k(2k + 3) + 1)/((2k + 1)(2k + 3))

= (2k2 + 3k + 1)/((2k + 1)(2k + 3))

= ((2k + 1)(k + 1))/((2k + 1)(2k + 3))

= (k + 1)/(2k + 3) → Terbukti

 

Jadi, dengan induksi matematika terbukti bahwa 1/3 + 1/15 + 1/35 + .... + 1/((2n - 1)(2n + 1)) = n/(2n + 1).


Iklan

Iklan

lock

Yah, akses pembahasan gratismu habis


atau

Dapatkan jawaban pertanyaanmu di AiRIS. Langsung dijawab oleh bestie pintar

Tanya Sekarang

Mau pemahaman lebih dalam untuk soal ini?

Tanya ke Forum

Biar Robosquad lain yang jawab soal kamu

Tanya ke Forum

LATIHAN SOAL GRATIS!

Drill Soal

Latihan soal sesuai topik yang kamu mau untuk persiapan ujian

Cobain Drill Soal

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

Pertanyaan serupa

Tentukan turunan pertama dari fx= -3xx-2

322

5.0

Jawaban terverifikasi

Terdapat 9 karyawan pada suatu perusahaan di bidang animasi. Setiap kali ada order pekerjaan film animasi, order tersebut akan dikerjakan oleh 3 orang dengan pembagian kerja 1 orang pembuat desain manual, 1 orang coloring di komputer, dan 1 orang composing. Setiap ganti pekerjaan, mereka juga akan berganti pasangan maupun pembagian kerjanya. Tentukan setelah berapa kali order pekerjaan tim yang sama akan bertemu kembali.

351

1.0

Lihat jawaban (1)