Hannah H
13 Januari 2023 19:49
Iklan
Hannah H
13 Januari 2023 19:49
Pertanyaan
8 dari 10 siswa nilainya naik
dengan paket belajar pilihan
Habis dalam
00
:
07
:
53
:
11
7
1
Iklan
C. Salsa
Mahasiswa/Alumni Universitas Gajah Mada
01 Februari 2023 02:35
Jawaban : [x^(1/2) - x^(-4/5)]/[x^(1/4) - x^(3/5)]
Ingat!
^(n)√(a^(m)) = a^(m/n)
a^(-n) = 1/a^(n)
a^(m) x a^(n) = a^(m+n)
(a^(m))^(n) = a^(mn)
Asumsi soal:
[(^(4)√x - 1/^(5)√x^(2))(^(4)√x + 1/^(5)√x^(2))]/[^(4)√x - 1/^(5)√x^(2) x]
Sehingga
[(^(4)√x - 1/^(5)√x^(2))(^(4)√x + 1/^(5)√x^(2))]/[^(4)√x - 1/^(5)√x^(2) x]
= [(x^(1/4) - 1/(x^(2/5)))(x^(1/4) + 1/(x^(2/5)))]/[x^(1/4) - 1/x^(2/5) x]
= [(x^(1/4))^(2) - (1/(x^(2/5)))^(2)]/[x^(1/4) - x^(-2/5) x]
= [x^(1/2) - 1/(x^(4/5))]/[x^(1/4) - x^(-2/5+1)]
= [x^(1/2) - x^(-4/5)]/[x^(1/4) - x^(3/5)]
= [x^(1/2) - x^(-4/5)]/[x^(1/4) - x^(3/5)]
Jadi, [(^(4)√x - 1/^(5)√x^(2))(^(4)√x + 1/^(5)√x^(2))]/[^(4)√x - 1/^(5)√x^(2) x] = [x^(1/2) - x^(-4/5)]/[x^(1/4) - x^(3/5)]
· 0.0 (0)
Iklan
Tanya ke Forum
Biar Robosquad lain yang jawab soal kamu
LATIHAN SOAL GRATIS!
Drill Soal
Latihan soal sesuai topik yang kamu mau untuk persiapan ujian
Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!
Iklan