Hannah H
13 Januari 2023 19:49
Iklan
Hannah H
13 Januari 2023 19:49
Pertanyaan
Belajar bareng Champions
Brain Academy Champions
Hanya di Brain Academy
Habis dalam
01
:
01
:
52
:
12
7
1
Iklan
C. Salsa
Mahasiswa/Alumni Universitas Gajah Mada
01 Februari 2023 02:35
Jawaban : [x^(1/2) - x^(-4/5)]/[x^(1/4) - x^(3/5)]
Ingat!
^(n)√(a^(m)) = a^(m/n)
a^(-n) = 1/a^(n)
a^(m) x a^(n) = a^(m+n)
(a^(m))^(n) = a^(mn)
Asumsi soal:
[(^(4)√x - 1/^(5)√x^(2))(^(4)√x + 1/^(5)√x^(2))]/[^(4)√x - 1/^(5)√x^(2) x]
Sehingga
[(^(4)√x - 1/^(5)√x^(2))(^(4)√x + 1/^(5)√x^(2))]/[^(4)√x - 1/^(5)√x^(2) x]
= [(x^(1/4) - 1/(x^(2/5)))(x^(1/4) + 1/(x^(2/5)))]/[x^(1/4) - 1/x^(2/5) x]
= [(x^(1/4))^(2) - (1/(x^(2/5)))^(2)]/[x^(1/4) - x^(-2/5) x]
= [x^(1/2) - 1/(x^(4/5))]/[x^(1/4) - x^(-2/5+1)]
= [x^(1/2) - x^(-4/5)]/[x^(1/4) - x^(3/5)]
= [x^(1/2) - x^(-4/5)]/[x^(1/4) - x^(3/5)]
Jadi, [(^(4)√x - 1/^(5)√x^(2))(^(4)√x + 1/^(5)√x^(2))]/[^(4)√x - 1/^(5)√x^(2) x] = [x^(1/2) - x^(-4/5)]/[x^(1/4) - x^(3/5)]
· 0.0 (0)
Iklan
Buka akses jawaban yang telah terverifikasi
Yah, akses pembahasan gratismu habis
Tanya ke Forum
Biar Robosquad lain yang jawab soal kamu
LATIHAN SOAL GRATIS!
Drill Soal
Latihan soal sesuai topik yang kamu mau untuk persiapan ujian
Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!
Iklan