Pertanyaan

Turunan pertama dari fungsi f ( x ) = 2 x − 1 x ​ ​ , x  = 2 1 ​ adalah ...

Turunan pertama dari fungsi  adalah ...

S. Yoga

Master Teacher

Mahasiswa/Alumni Universitas Pendidikan Indonesia

Jawaban terverifikasi

Jawaban

turunan pertama dari fungsi adalah .

turunan pertama dari fungsi f left parenthesis x right parenthesis equals fraction numerator square root of x over denominator 2 x minus 1 end fraction comma space x not equal to 1 half adalah fraction numerator square root of x open parentheses negative 2 x minus 1 close parentheses over denominator 8 x cubed minus 8 x squared plus 2 x end fraction.

Pembahasan

Mencari turunan: Jadi, turunan pertama dari fungsi adalah .

Mencari turunan:

table attributes columnalign right center left columnspacing 0px end attributes row cell f left parenthesis x right parenthesis end cell equals cell fraction numerator square root of x over denominator 2 x minus 1 end fraction end cell row cell f apostrophe left parenthesis x right parenthesis end cell equals cell fraction numerator straight d over denominator straight d x end fraction open parentheses f left parenthesis x right parenthesis close parentheses end cell row blank equals cell fraction numerator straight d over denominator straight d x end fraction open parentheses fraction numerator square root of x over denominator 2 x minus 1 end fraction close parentheses end cell row blank equals cell fraction numerator fraction numerator straight d over denominator straight d x end fraction open parentheses square root of x close parentheses open parentheses 2 x minus 1 close parentheses minus fraction numerator straight d over denominator straight d x end fraction open parentheses 2 x minus 1 close parentheses square root of x over denominator open parentheses 2 x minus 1 close parentheses squared end fraction end cell row blank equals cell fraction numerator fraction numerator straight d over denominator straight d x end fraction open parentheses x to the power of 1 half end exponent close parentheses open parentheses 2 x minus 1 close parentheses minus fraction numerator straight d over denominator straight d x end fraction open parentheses 2 x minus 1 close parentheses square root of x over denominator open parentheses 2 x minus 1 close parentheses squared end fraction end cell row blank equals cell fraction numerator fraction numerator 1 over denominator 2 square root of x end fraction open parentheses 2 x minus 1 close parentheses minus 2 square root of x over denominator open parentheses 2 x minus 1 close parentheses squared end fraction end cell row blank equals cell fraction numerator fraction numerator 2 x minus 1 over denominator 2 square root of x end fraction minus 2 square root of x over denominator open parentheses 2 x minus 1 close parentheses squared end fraction end cell row blank equals cell fraction numerator fraction numerator negative 2 x minus 1 over denominator 2 square root of x end fraction over denominator open parentheses 2 x minus 1 close parentheses squared end fraction end cell row blank equals cell fraction numerator negative 2 x minus 1 over denominator 2 square root of x open parentheses 2 x minus 1 close parentheses squared end fraction end cell row blank equals cell fraction numerator square root of x open parentheses negative 2 x minus 1 close parentheses over denominator 8 x cubed minus 8 x squared plus 2 x end fraction end cell end table 

Jadi, turunan pertama dari fungsi f left parenthesis x right parenthesis equals fraction numerator square root of x over denominator 2 x minus 1 end fraction comma space x not equal to 1 half adalah fraction numerator square root of x open parentheses negative 2 x minus 1 close parentheses over denominator 8 x cubed minus 8 x squared plus 2 x end fraction.

34

0.0 (0 rating)

Iklan

Pertanyaan serupa

Tentukan turunan pertama dari fungsi: d. f ( x ) = ( 4 x + 3 3 x + 2 ​ ) 3 !

36

1.0

Jawaban terverifikasi

Iklan

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Fitur Roboguru

Topik Roboguru

Hubungi Kami

Ruangguru WhatsApp

081578200000

Email info@ruangguru.com

info@ruangguru.com

Contact 02140008000

02140008000

Ikuti Kami

©2022 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia