Roboguru

Himpunan penyelesaian dari pertidaksamaan  pada interval 2π​<x<23π​ adalah ….

Pertanyaan

Himpunan penyelesaian dari pertidaksamaan sin squared 2 x times open parentheses cotan squared x plus 1 close parentheses plus square root of 2 cos invisible function application x greater than 0 pada interval fraction numerator blank pi over denominator 2 end fraction less than x less than fraction numerator 3 pi over denominator 2 end fraction adalah ….

  1. fraction numerator blank 5 pi over denominator 6 end fraction less than x less than fraction numerator blank 7 pi over denominator 6 end fraction 

  2. pi over 2 less than x less than fraction numerator blank 3 pi over denominator 4 end fraction 

  3. fraction numerator blank 3 pi over denominator 4 end fraction less than x less than fraction numerator 5 pi over denominator 4 end fraction 

  4. x less than fraction numerator blank 3 pi over denominator 4 end fraction atau x greater than fraction numerator 5 pi over denominator 4 end fraction 

  5. x less than fraction numerator blank 5 pi over denominator 6 end fraction atau x greater than fraction numerator blank 7 pi over denominator 6 end fraction 

Pembahasan:

Ingat identitas trigonometri cotan squared x plus 1 equals cosec squared x.

Ingat pula bahwa sin invisible function application 2 x equals 2 sin invisible function application x cos invisible function application x.

Perhatikan perhitungan berikut ini!

table attributes columnalign right center left columnspacing 0px end attributes row cell sin squared 2 x times open parentheses cotan squared x plus 1 close parentheses plus square root of 2 cos invisible function application x end cell greater than 0 row cell 2 sin squared x cos squared x times cosec squared x plus square root of 2 cos invisible function application x end cell greater than 0 row cell 2 sin squared x cos squared x times fraction numerator 1 over denominator sin squared x end fraction plus square root of 2 cos invisible function application x end cell greater than 0 row cell 2 cos squared x plus square root of 2 cos invisible function application x end cell greater than 0 row cell cos invisible function application x open parentheses 2 cos invisible function application x plus square root of 2 close parentheses end cell greater than 0 end table

Kemudian, tentukan pembuat nol serta nilai x yang memenuhi sebagai berikut.

table attributes columnalign right center left columnspacing 0px end attributes row cell cos invisible function application x end cell equals 0 row x equals cell open curly brackets fraction numerator blank pi over denominator 2 end fraction comma blank fraction numerator 3 pi over denominator 2 end fraction close curly brackets end cell end table

dan

table attributes columnalign right center left columnspacing 0px end attributes row cell 2 cos invisible function application x plus square root of 2 end cell equals 0 row cell 2 cos invisible function application x end cell equals cell negative square root of 2 end cell row cell cos invisible function application x end cell equals cell negative fraction numerator square root of 2 over denominator 2 end fraction end cell end table

Ingat nilai cos invisible function application 45 degree equals fraction numerator square root of 2 over denominator 2 end fraction. Ingat pula bahwa cosinus bernilai negatif pada kuadran II dan III. 

Akibatnya nilai x yang memenuhi adalah sebagai berikut.

cos invisible function application x equals cos invisible function application left parenthesis 180 minus 45 right parenthesis degree equals cos invisible function application 135 degree x equals 135 degree equals fraction numerator 3 pi over denominator 4 end fraction

dan

cos invisible function application x equals cos invisible function application open parentheses 180 plus 45 close parentheses degree equals cos invisible function application 225 degree x equals 225 degree equals fraction numerator 5 pi over denominator 4 end fraction

Didapat nilai x equals open curly brackets fraction numerator blank pi over denominator 2 end fraction comma fraction numerator 3 pi over denominator 4 end fraction comma fraction numerator 5 pi over denominator 4 end fraction comma blank fraction numerator 3 pi over denominator 2 end fraction close curly brackets

Selanjutnya, setelah dilakukan uji titik didapat garis bilangan sebagai berikut.
 


Sebelumnya, telah didapat 2 cos squared x plus cos invisible function application x greater than 0 dengan interval fraction numerator blank pi over denominator 2 end fraction less than x less than fraction numerator 3 pi over denominator 2 end fraction.

Dengan demikian, pilihlah daerah bernilai positif yang memenuhi interval tersebut sehingga didapat nilai x yang memenuhi adalah fraction numerator blank 3 pi over denominator 4 end fraction less than x less than fraction numerator 5 pi over denominator 4 end fraction.

Jadi, jawaban yang tepat adalah C.

Jawaban terverifikasi

Dijawab oleh:

Terakhir diupdate 07 Oktober 2021

Roboguru sudah bisa jawab 91.4% pertanyaan dengan benar

Tapi Roboguru masih mau belajar. Menurut kamu pembahasan kali ini sudah membantu, belum?

Membantu

Kurang Membantu

Apakah pembahasan ini membantu?

Belum menemukan yang kamu cari?

Post pertanyaanmu ke Tanya Jawab, yuk

Mau Bertanya

Pertanyaan serupa

Himpunan penyelesaian dari pertidaksamaan  pada interval 2π​<x<23π​ adalah ….

0

Roboguru

Penyelesaian dari pertidaksamaan 22​sinx−23​cosx≤6​−4sinxcosx untuk 0<x<π adalah ….

0

Roboguru

Penyelesaian dari pertidaksamaan cos2x≤2−3​cosx untuk −2π​<x<2π​ adalah ….

0

Roboguru

Perhatikan gambar di bawah ini!   Diberikan kurva y=cosx, garis y=−21​3​, dan daerah berwarna yang dibatasi oleh keduanya. Pertidaksamaan yang tepat menggambarkan daerah tersebut adalah ….

0

Roboguru

Penyelesaian dari sinx+cosx≥0 untuk 0<x<π adalah ….

0

Roboguru

Roboguru sudah bisa jawab 91.4% pertanyaan dengan benar

Tapi Roboguru masih mau belajar. Menurut kamu pembahasan kali ini sudah membantu, belum?

Membantu

Kurang Membantu

Apakah pembahasan ini membantu?

Belum menemukan yang kamu cari?

Post pertanyaanmu ke Tanya Jawab, yuk

Mau Bertanya

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Ruangguru

Produk Ruangguru

Produk Lainnya

Hubungi Kami

Ikuti Kami

©2021 Ruangguru. All Rights Reserved