Roboguru

Dua buah partikel masing-masing dengan massa m1 = 4m dan m2 = 9m (m adalah satuan massa benda). m1 dan m2 ditempatkan pada sistem garis bilangan dengan cara seperti tampak pada gambar berikut : Tentukan titik yang memiliki kuat medan gravitasi nol!

Pertanyaan

Dua buah partikel masing-masing dengan massa m1 = 4m dan m2 = 9m (m adalah satuan massa benda). m1 dan m2 ditempatkan pada sistem garis bilangan dengan cara seperti tampak pada gambar berikut :

undefined

Tentukan titik yang memiliki kuat medan gravitasi nol!undefined

Pembahasan Soal:

Pada gambar berikut, titik yang memiliki kuat medan gravitasi nol adalah titik C. Hal ini dapat ditunjukkan sebagai berikut.

undefined


Dari gambar tersebut, maka besar medan gravitasi pada titik C dapat ditentukan dengan menggunakan persamaan sebagai berikut.

begin mathsize 14px style E subscript C equals E subscript C italic 1 end subscript minus E subscript C italic 2 end subscript E subscript C equals fraction numerator G m subscript italic 1 over denominator r subscript C italic 1 end subscript to the power of italic 2 end fraction minus fraction numerator G m subscript italic 2 over denominator r subscript C italic 2 end subscript to the power of italic 2 end fraction E subscript C equals fraction numerator 4 m G over denominator open parentheses 2 r close parentheses squared end fraction minus fraction numerator 9 m G over denominator open parentheses 3 r close parentheses squared end fraction E subscript C equals fraction numerator m G over denominator r to the power of italic 2 end fraction minus fraction numerator m G over denominator r to the power of italic 2 end fraction E subscript C equals 0 space bevelled straight m over straight s squared end style 


Jadi, titik yang memiliki kuat medan gravitasi nol adalah titik C.undefined

Pembahasan terverifikasi oleh Roboguru

Dijawab oleh:

A. Acfreelance

Terakhir diupdate 29 Maret 2021

Roboguru sudah bisa jawab 91.4% pertanyaan dengan benar

Tapi Roboguru masih mau belajar. Menurut kamu pembahasan kali ini sudah membantu, belum?

Membantu

Kurang Membantu

Apakah pembahasan ini membantu?

Belum menemukan yang kamu cari?

Post pertanyaanmu ke Tanya Jawab, yuk

Mau Bertanya

Pertanyaan yang serupa

Planet X memiliki jari-jari 5 kali jari-jari bumi dan massa planet 10 kali massa bumi. Perbandingan kuat medan gravitasi planet bumi dan planet X adalah ....

Pembahasan Soal:

Diketahui :

begin mathsize 14px style r subscript X equals 5 space r subscript B m subscript X equals 10 space m subscript B end style 

Ditanya : begin mathsize 14px style g subscript B space colon space g subscript X end style 

Jawab :

Kuat medan gravitasi dirumuskan oleh:  begin mathsize 14px style g equals fraction numerator G space m over denominator r squared end fraction end style .

Sehingga, perbandingan kuat medan gravitasi planet bumi dan planet X adalah:

begin mathsize 14px style g subscript B over g subscript X equals m subscript B over m subscript X cross times open parentheses r subscript X over r subscript B close parentheses squared g subscript B over g subscript X equals fraction numerator m subscript B over denominator 10 space m subscript B end fraction cross times open parentheses fraction numerator 5 space r subscript B over denominator r subscript B end fraction close parentheses squared g subscript B over g subscript X equals 1 over 10 cross times 25 over 1 g subscript B over g subscript X equals 5 over 2 g subscript B space colon space g subscript X equals 5 space colon space 2 end style 

 

Oleh karena itu, jawaban yang benar adalah E. 

Roboguru

Sebuah satelit mengelilingi bumi pada orbit berbentuk lingkaran dengan jari-jari R dan mengalami kuat medan gravitasi g. Agar kuat medan gravitasi menjadi setengahnya, tentukan jari-jari orbit yang ha...

Pembahasan Soal:

Persamaan kuat Medan Gravitasi dapat dituliskan sebagai berikut :

begin mathsize 14px style bold italic g bold space bold equals blank bold italic G bold space bold italic M over bold italic r to the power of bold 2 blank end style  

Agar medan gravitasi menjadi setengahnya maka ruas kanan dan ruas kiri harus dikali setengah

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell 1 half space g space end cell equals cell space 1 half space G space M subscript 1 over r subscript 1 squared end cell row cell 1 half space g space end cell equals cell space G space fraction numerator M subscript 1 over denominator left parenthesis r subscript 1 blank end subscript space square root of 2 right parenthesis squared end fraction end cell end table end style 

Nilai r harus

Error converting from MathML to accessible text. 

Maka, jari-jari orbit yang harus ditempati oleh satelit tersebut yaitu begin mathsize 14px style bold 1 bold comma bold 41 bold italic r subscript bold 1 end style.

Roboguru

Jika benda A berada pada ketinggian 2R di atas permukaan bumi dan benda B berada pada ketinggian  di atas permukaan bumi (dengan R = jari-jari bumi), maka tentukan perbandingan kuat medan gravitasi ya...

Pembahasan Soal:

Diketahui :

r subscript A equals R plus 2 R equals 3 R r subscript B equals R plus 1 half R equals 3 over 2 R 

Ditanya : perbandingan kuat medan gravitasi yang dialami oleh benda A dan benda B?

Jawab :

Persamaan kuat medan gravitasi bumi adalah 

g equals G M over r squared 

Perbandingan kuat medan gravitasi benda A dan benda B

g subscript 1 over g subscript 2 equals r subscript 2 squared over r subscript 1 squared g subscript 1 over g subscript 2 equals open parentheses begin display style 3 over 2 end style R close parentheses squared over open parentheses 3 R close parentheses squared g subscript 1 over g subscript 2 equals fraction numerator begin display style 9 over 4 end style begin display style R end style squared over denominator 9 R squared end fraction g subscript 1 over g subscript 2 equals fraction numerator begin display style 1 end style over denominator 4 end fraction 

Jadi, perbandingan kuat medan gravitasi yang dialami oleh benda A dan benda B adalah 1 : 4.

Roboguru

Pada setiap titik sudut sebuah segitiga sama sisi dengan panjang sisi a terdapat partikel bermassa m. Jika konstanta gravitasi umum G, besar kuat medan gravitasi di pusat segitiga adalah?

Pembahasan Soal:

Ditanyakan: resultan medan gravitasi di pusam (P)?
Jawab:

 

Berdasarkan gambar maka kuat medan gravitasi begin mathsize 14px style g subscript A x end subscript space d a n space g subscript B x end subscript end style akan saling menghilangkan.

Kuat medan gravitasi oleh massa di C

begin mathsize 14px style g subscript C equals fraction numerator G m subscript c over denominator r subscript c squared end fraction g subscript C equals fraction numerator G m over denominator open parentheses begin display style 2 over 3 end style t close parentheses squared end fraction g subscript C equals fraction numerator G m over denominator open parentheses begin display style 2 over 3. fraction numerator square root of 3 over denominator 2 end fraction a end style close parentheses squared end fraction g subscript C equals fraction numerator 3 G m over denominator a squared end fraction end style 

Kuat medan gravitasi oleh massa di A dan B

begin mathsize 14px style g subscript A y end subscript equals g subscript B y end subscript equals g subscript A space cos open parentheses A P C apostrophe close parentheses g subscript A y end subscript equals g subscript B y end subscript equals fraction numerator G m over denominator A P squared end fraction space fraction numerator P C apostrophe over denominator A P end fraction g subscript A y end subscript equals g subscript B y end subscript equals fraction numerator G m open parentheses P C apostrophe close parentheses over denominator A P cubed end fraction g subscript A y end subscript equals g subscript B y end subscript equals fraction numerator G m open parentheses begin display style 1 third end style t close parentheses over denominator open parentheses square root of open parentheses begin display style 1 third end style t close parentheses squared plus open parentheses begin display style 1 half end style a close parentheses squared end root close parentheses cubed end fraction g subscript A y end subscript equals g subscript B y end subscript equals fraction numerator G m open parentheses begin display style fraction numerator square root of 3 over denominator 6 end fraction a end style close parentheses over denominator open parentheses square root of begin display style 1 third end style a squared end root close parentheses cubed end fraction g subscript A y end subscript equals g subscript B y end subscript equals fraction numerator G m open parentheses begin display style fraction numerator square root of 3 over denominator 6 end fraction a end style close parentheses over denominator open parentheses begin display style fraction numerator a over denominator square root of 3 end fraction end style close parentheses cubed end fraction g subscript A y end subscript equals g subscript B y end subscript equals fraction numerator G m open parentheses begin display style fraction numerator square root of 3 over denominator 6 end fraction a end style close parentheses over denominator begin display style fraction numerator a cubed over denominator 3 square root of 3 end fraction end style end fraction g subscript A y end subscript equals g subscript B y end subscript equals fraction numerator 9 a G m over denominator begin display style 6 a cubed end style end fraction g subscript A y end subscript equals g subscript B y end subscript equals negative fraction numerator 3 G m over denominator begin display style 2 a squared end style end fraction end style 

Maka resultannya

begin mathsize 14px style g subscript p equals g subscript c minus g subscript A y end subscript minus g subscript B y end subscript g subscript p equals open parentheses fraction numerator 3 G M over denominator a squared end fraction close parentheses minus open parentheses fraction numerator 3 G m over denominator 2 a squared end fraction close parentheses minus open parentheses fraction numerator 3 G m over denominator 2 a squared end fraction close parentheses g subscript p equals 0 end style 

Jadi, kuat medan gravitasi di pusat segiti adalah 0.

Roboguru

Tentukanlah perbandingan kuat medan gravitasi bumi untuk dua buah benda, yang satu berada di permukaan bumi dan satu lagi di ketinggian yang berjarak 1/2 R dari permukaan bumi (R = jari-jari bumi)...

Pembahasan Soal:

Pembahasan

gunakan persamaan kuat medan gravitasi

begin mathsize 14px style g subscript 1 over g subscript 2 equals fraction numerator begin display style fraction numerator up diagonal strike G M end strike over denominator r subscript 1 squared end fraction end style over denominator begin display style fraction numerator up diagonal strike G M end strike over denominator r subscript 2 squared end fraction end style end fraction g subscript 1 over g subscript 2 equals fraction numerator begin display style r subscript 2 squared end style over denominator begin display style r subscript 1 squared end style end fraction g subscript 1 over g subscript 2 equals fraction numerator begin display style left parenthesis R plus bevelled 1 half R right parenthesis squared end style over denominator begin display style R squared end style end fraction g subscript 1 over g subscript 2 equals fraction numerator begin display style left parenthesis 3 over 2 R right parenthesis squared end style over denominator begin display style R squared end style end fraction g subscript 1 over g subscript 2 equals fraction numerator begin display style 9 over 4 up diagonal strike R squared end strike end style over denominator begin display style up diagonal strike R squared end strike end style end fraction g subscript 1 over g subscript 2 equals 9 over 4 end style

Dengan demikian perbandingannya adalah 9 : 4.

Oleh karena itu, jawaban yang benar adalah A

Roboguru

Roboguru sudah bisa jawab 91.4% pertanyaan dengan benar

Tapi Roboguru masih mau belajar. Menurut kamu pembahasan kali ini sudah membantu, belum?

Membantu

Kurang Membantu

Apakah pembahasan ini membantu?

Belum menemukan yang kamu cari?

Post pertanyaanmu ke Tanya Jawab, yuk

Mau Bertanya

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Ruangguru

Produk Ruangguru

Produk Lainnya

Hubungi Kami

Ikuti Kami

©2021 Ruangguru. All Rights Reserved