Roboguru

Buktikanlah. b. 3+32+33+...+3n=21​(3n+1−3)

Pertanyaan

Buktikanlah.

b. 3 plus 3 squared plus 3 cubed plus... plus 3 to the power of straight n equals 1 half open parentheses 3 to the power of straight n plus 1 end exponent minus 3 close parentheses 

Pembahasan Soal:

Pembuktian menggunakan induksi matematika

Dimana untuk n = 1

table attributes columnalign right center left columnspacing 0px end attributes row cell 3 plus 3 squared plus 3 cubed plus... plus 3 to the power of straight n end cell equals cell 1 half open parentheses 3 to the power of straight n plus 1 end exponent minus 3 close parentheses end cell row cell 3 plus 3 squared plus 3 cubed plus... plus 3 to the power of 1 end cell equals cell 1 half open parentheses 3 to the power of 1 plus 1 end exponent minus 3 close parentheses end cell row 3 equals cell 1 half open parentheses 3 squared minus 3 close parentheses end cell row 3 equals cell 1 half open parentheses 6 close parentheses end cell row 3 equals cell 3 rightwards arrow Terbukti space end cell end table

Untuk n = k diasumsikan terbukti maka

table attributes columnalign right center left columnspacing 0px end attributes row cell 3 plus 3 squared plus 3 cubed plus... plus 3 to the power of straight n end cell equals cell 1 half open parentheses 3 to the power of straight n plus 1 end exponent minus 3 close parentheses end cell row cell 3 plus 3 squared plus 3 cubed plus... plus 3 to the power of straight k end cell equals cell 1 half open parentheses 3 to the power of straight k plus 1 end exponent minus 3 close parentheses end cell row cell 3 to the power of straight k end cell equals cell 1 half open parentheses 3 to the power of straight k plus 1 end exponent minus 3 close parentheses end cell row cell 3 to the power of straight k end cell equals cell 1 half open parentheses 3 to the power of straight k plus 1 end exponent minus 3 close parentheses rightwards arrow Terbukti space end cell end table

Untuk n = k+1 maka

table attributes columnalign right center left columnspacing 0px end attributes row cell 3 plus 3 squared plus 3 cubed plus... plus 3 to the power of straight n end cell equals cell 1 half open parentheses 3 to the power of straight n plus 1 end exponent minus 3 close parentheses end cell row cell 3 plus 3 squared plus 3 cubed plus... plus 3 to the power of straight k plus 3 to the power of straight k plus 1 end exponent end cell equals cell 1 half open parentheses 3 to the power of straight k plus 2 end exponent minus 3 close parentheses end cell row cell 1 half open parentheses 3 to the power of straight k plus 1 end exponent minus 3 close parentheses plus 3 to the power of straight k plus 1 end exponent end cell equals cell 1 half open parentheses 3 to the power of straight k plus 2 end exponent minus 3 close parentheses end cell row cell 1 half open parentheses 3 to the power of straight k plus 2 end exponent minus 3 close parentheses end cell equals cell 1 half open parentheses 3 to the power of straight k plus 2 end exponent minus 3 close parentheses rightwards arrow Terbukti space end cell end table

Jadi terbukti bahwa 3 plus 3 squared plus 3 cubed plus... plus 3 to the power of straight n equals 1 half open parentheses 3 to the power of straight n plus 1 end exponent minus 3 close parentheses karena hasil dari sisi kanan dan kiri sama

 

Pembahasan terverifikasi oleh Roboguru

Dijawab oleh:

A. Acfreelance

Mahasiswa/Alumni UIN Walisongo Semarang

Terakhir diupdate 06 Oktober 2021

Roboguru sudah bisa jawab 91.4% pertanyaan dengan benar

Tapi Roboguru masih mau belajar. Menurut kamu pembahasan kali ini sudah membantu, belum?

Membantu

Kurang Membantu

Apakah pembahasan ini membantu?

Belum menemukan yang kamu cari?

Post pertanyaanmu ke Tanya Jawab, yuk

Mau Bertanya

Pertanyaan yang serupa

Untuk n∈{bilanganasli}, buktikan bahwa  i=1∑n​(2i−1)2=3(2n−1)⋅n(2n+1)​

Pembahasan Soal:

Langkah-langkah induksi:

1. Buktikan untuk bilangan 1, pernyataan tersebut benar.

(2(1)1)211===3(2(1)1)(1)(2(1)+1)31131 

Benar untuk n equals 1.

2. Nyatakan untuk bilangan asli sembarang, misalnya n=k, pernyataan tersebut diasumsikan benar.

i=1k(2i1)2=3(2k1)k(2k+1) 

3. Untuk n=k+1 akan dibuktikan

i=1k+1(2i1)2=3(2(k+1)1)(k+1)(2(k+1)+1) 

Maka:

============i=1k+1(2i1)2i=1k(2i1)2+(2(k+1)1)23(2k1)k(2k+1)+(2(k+1)1)23(2k1)k(2k+1)+2k+123(2k1)k(2k+1)+33(2k+1)23(2k1)k(2k+1)+3(2k+1)23(2k+1)(2k2k+3(2k+1))3(2k+1)(2k2k+6k+3)3(2k+1)(2k2+5k+3)3(2k+1)(k+1)(2k+3)3(2k+1)(k+1)(2k+3)3(2k+21)(k+1)(2k+2+1)3(2(k+1)1)(k+1)(2(k+1)+1)    

Dengan demikian, Untuk begin mathsize 14px style n element of open curly brackets bilangan space asli close curly brackets end style berlaku begin mathsize 14px style sum from i equals 1 to n of open parentheses 2 i minus 1 close parentheses squared equals fraction numerator open parentheses 2 n minus 1 close parentheses times n open parentheses 2 n plus 1 close parentheses over denominator 3 end fraction end style.

0

Roboguru

Buktikan dengan induksi matematika. 21​+41​+81​+⋯+2n1​=1−2n1​

Pembahasan Soal:

Prinsip Induksi Matematika:

Misalkan P open parentheses n close parentheses merupakan suatu pernyataan untuk setiap bilangan asli n. Pernyataan P open parentheses n close parentheses benar jika memenuhi langkah berikut.

1. Langkah awal: Dibuktikan P open parentheses 1 close parentheses benar.

2. Langkah induksi: Jika diasumsikan P open parentheses k close parentheses benar, maka harus dibuktikan bahwa P open parentheses k plus 1 close parentheses juga benar, untuk setiap k bilangan asli.

Jika langkah 1 dan 2 sudah diuji kebenarannya, maka ditarik kesimpulan bahwa P open parentheses n close parentheses benar untuk setiap bilangan asli n.

Akan dibuktikan dengan induksi matematika bahwa

1 half plus 1 fourth plus 1 over 8 plus horizontal ellipsis plus 1 over 2 to the power of n equals 1 minus 1 over 2 to the power of n

Langkah awal:

Akan dibuktikan P open parentheses n close parentheses benar untuk n equals 1

table attributes columnalign right center left columnspacing 0px end attributes row cell 1 over 2 to the power of 1 end cell equals cell 1 minus 1 over 2 to the power of n end cell row cell 1 half end cell equals cell 1 minus 1 half end cell row cell 1 half end cell equals cell 1 half end cell end table

Jadi, terbukti bahwa P open parentheses 1 close parentheses benar.

Langkah induksi:

Asumsikan P open parentheses k close parentheses benar sehingga 

1 half plus 1 fourth plus 1 over 8 plus horizontal ellipsis plus 1 over 2 to the power of k equals 1 minus 1 over 2 to the power of k

Akan ditunjukkan bahwa P open parentheses k plus 1 close parentheses juga benar, sedemikian sehingga 

1 half plus 1 fourth plus 1 over 8 plus horizontal ellipsis plus 1 over 2 to the power of k plus 1 over 2 to the power of k plus 1 end exponent equals 1 minus 1 over 2 to the power of k plus 1 end exponent

Bukti:

table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell 1 half plus 1 fourth plus 1 over 8 plus horizontal ellipsis plus 1 over 2 to the power of k plus 1 over 2 to the power of k plus 1 end exponent end cell row blank equals cell 1 minus 1 over 2 to the power of k plus 1 over 2 to the power of k plus 1 end exponent end cell row blank equals cell 1 minus 1 over 2 to the power of k plus fraction numerator 1 over denominator 2 times 2 to the power of k end fraction end cell row blank equals cell fraction numerator 2 times 2 to the power of k minus 2 plus 1 over denominator 2 times 2 to the power of k end fraction end cell row blank equals cell fraction numerator 2 times 2 to the power of k minus 1 over denominator 2 times 2 to the power of k end fraction end cell row blank equals cell 1 minus fraction numerator 1 over denominator 2 times 2 to the power of k end fraction end cell row blank equals cell 1 minus 1 over 2 to the power of k plus 1 end exponent end cell end table

Jadi, terbukti bahwa P open parentheses k plus 1 close parentheses benar .

Pernyataan P open parentheses n close parentheses memenuhi kedua prinsip induksi matematika.

Dengan demikian, berdasarkan prinsip induksi matematika, P open parentheses n close parentheses benar untuk setiap n bilangan asli.

1

Roboguru

i=1∑n​(2i−1)=n2

Pembahasan Soal:

Tidak terdapat perintah dalam soal. Kita asumsikan bahwa perintahnya adalah membuktikan pernyataan pada soal. Kita dapat menggunakan induksi matematika untuk membuktikannya. Langkah-langkah pembuktian menggunakan induksi matematika adalah sebagai berikut:

  • tunjukkan pernyataan benar untuk n=1
  • asumsikan pernyataan benar untuk n=k
  • tunjukkan pernyataan benar untuk n=k+1

Notasi i=1n(2i1)=n2 dapat juga dituliskan 1+3+5+...+(2n1)=n2

  • untuk n=1

2(1)11==121

terbukti benar untuk n=1

  • asumsikan n=k benar

1+3+5+...+(2k1)=k2

  • untuk n=k+1

1+3+5+...+(2k1)+(2(k+1)1)k2+(2(k+1)1)k2+(2k+21)k2+2k+1====(k+1)2(k+1)2k2+2k+1k2+2k+1

terbukti benar untuk n=k+1

Dengan demikian i=1n(2i1)=n2 terbukti benar.

0

Roboguru

Buktikan ∑i=1n​i(i+1)=3n(n+1)(n+2)​ untuk setiap bilangan asli n!

Pembahasan Soal:

Langkah-langkah Prinsip Induksi Matematika:

1. Buktikan untuk n = 1 adalah benar.

2. Asumsikan pernyataan benar untuk sembarang bilangan asli n = k.

3. Buktikan untuk bilangan asli n = k + 1 pernyataan tersebut juga benar.

 i=1ni(i+1)2+6+12+...+n(n+1)==3n(n+1)(n+2)3n(n+1)(n+2)

Pembuktiannya sebagai berikut:

1. Buktikan untuk n = 1 adalah benar.

1(1+1)22===31(1+1)(1+2)31232

Langkah pertama terbukti ya, karena ruas kiri dan kanannya sama.

2. Asumsikan pernyataan benar untuk sembarang bilangan asli n = k.

2+6+12+...+k(k+1)=3k(k+1)(k+2)

Pernyataan tersebut kita asumsikan atau kita anggap benar. Kemudian, kita lanjut ke langkah yang ketiga.

3. Buktikan untuk bilangan asli n = k + 1 pernyataan tersebut juga benar.

2+6+12+...+k(k+1)+(k+1)((k+1)+1)3k(k+1)(k+2)+(k+1)(K+2)3k(k+1)(k+2)+33(k+1)(k+2)3(k+1)(k+2)(k+3)====3(k+1)((k+1)+1)((k+1)+2)3(k+1)(k+2)(k+3)3(k+1)(k+2)(k+3)3(k+1)(k+2)(k+3)

Karena ruas kiri dan kanannya sama, berarti pernyataan n=k+1 bernilai benar.

Jadibegin inline style sum from i equals 1 to n of end style i open parentheses i plus 1 close parentheses equals fraction numerator n open parentheses n plus 1 close parentheses open parentheses n plus 2 close parentheses over denominator 3 end fraction bernilai benar.

0

Roboguru

Diberikan pernyataan sebagai berikut. untuk setiap bilangan asli n. Dengan menggunakan induksi matematika, dapat disimpulkan bahwa ....

Pembahasan Soal:

Diberikan pernyataan sebagai berikut.

P subscript n colon sum from i equals 1 to n of fraction numerator i plus 2 over denominator i times open parentheses i plus 1 close parentheses times 2 to the power of i end fraction equals 1 minus fraction numerator 1 over denominator open parentheses n plus 1 close parentheses times 2 to the power of n end fraction

untuk setiap bilangan asli n.

Karena akan dibuktikan pernyataan untuk setiap bilangan asli n, yaitu begin mathsize 14px style n greater or equal than 1 end style, maka langkah pertamanya adalah buktikan P subscript 1 benar.

LANGKAH 1: Buktikan P subscript 1 benar.

Perhatikan pernyataan berikut.

P subscript n colon sum from i equals 1 to n of fraction numerator i plus 2 over denominator i times open parentheses i plus 1 close parentheses times 2 to the power of i end fraction equals 1 minus fraction numerator 1 over denominator open parentheses n plus 1 close parentheses times 2 to the power of n end fraction

Substitusikan nilai n equals 1 seperti berikut ini.

P subscript 1 colon sum from i equals 1 to 1 of fraction numerator i plus 2 over denominator i times open parentheses i plus 1 close parentheses times 2 to the power of i end fraction equals 1 minus fraction numerator 1 over denominator open parentheses 1 plus 1 close parentheses times 2 to the power of 1 end fraction

Dari ruas kiri, didapatkan perhitungan sebagai berikut.

table attributes columnalign right center left columnspacing 0px end attributes row cell sum from i equals 1 to 1 of fraction numerator i plus 2 over denominator i times open parentheses i plus 1 close parentheses times 2 to the power of i end fraction end cell equals cell fraction numerator 1 plus 2 over denominator 1 times open parentheses 1 plus 1 close parentheses times 2 to the power of 1 end fraction end cell row blank equals cell fraction numerator 3 over denominator 1 times 2 times 2 end fraction end cell row blank equals cell 3 over 4 end cell end table

Dari ruas kanan, didapat perhitungan sebagai berikut.

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell 1 minus fraction numerator 1 over denominator open parentheses 1 plus 1 close parentheses times 2 to the power of 1 end fraction end cell equals cell 1 minus fraction numerator 1 over denominator 2 times 2 end fraction end cell row blank equals cell 1 minus 1 fourth end cell row blank equals cell 3 over 4 end cell end table end style

Karena ruas kiri sama dengan ruas kanan, maka P subscript 1 benar.

LANGKAH 2: Buktikan untuk sembarang bilangan asli k , P subscript k bernilai benar mengakibatkan P subscript k plus 1 end subscript bernilai benar.

Perhatikan pernyataan berikut.

P subscript n colon sum from i equals 1 to n of fraction numerator i plus 2 over denominator i times open parentheses i plus 1 close parentheses times 2 to the power of i end fraction equals 1 minus fraction numerator 1 over denominator open parentheses n plus 1 close parentheses times 2 to the power of n end fraction

Asumsikan pernyataan tersebut benar untuk sembarang bilangan asli k seperti berikut ini.

P subscript k colon sum from i equals 1 to k of fraction numerator i plus 2 over denominator i times open parentheses i plus 1 close parentheses times 2 to the power of i end fraction equals 1 minus fraction numerator 1 over denominator open parentheses k plus 1 close parentheses times 2 to the power of k end fraction

Substitusikan nilai n equals k plus 1 sebagai berikut.

P subscript k plus 1 end subscript colon sum from i equals 1 to k plus 1 of fraction numerator i plus 2 over denominator i times open parentheses i plus 1 close parentheses times 2 to the power of i end fraction equals 1 minus fraction numerator 1 over denominator open parentheses open parentheses k plus 1 close parentheses plus 1 close parentheses times 2 to the power of k plus 1 end exponent end fraction

Dari ruas kiri P subscript k plus 1 end subscript didapat perhitungan sebagai berikut.

table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell sum from i equals 1 to k plus 1 of fraction numerator i plus 2 over denominator i times open parentheses i plus 1 close parentheses times 2 to the power of i end fraction end cell row blank equals cell sum from i equals 1 to k of fraction numerator i plus 2 over denominator i times open parentheses i plus 1 close parentheses times 2 to the power of i end fraction plus fraction numerator open parentheses k plus 1 close parentheses plus 2 over denominator open parentheses k plus 1 close parentheses times open parentheses open parentheses k plus 1 close parentheses plus 1 close parentheses times 2 to the power of open parentheses k plus 1 close parentheses end exponent end fraction end cell row blank equals cell open parentheses 1 minus fraction numerator 1 over denominator open parentheses k plus 1 close parentheses times 2 to the power of k end fraction close parentheses plus fraction numerator open parentheses k plus 1 close parentheses plus 2 over denominator open parentheses k plus 1 close parentheses times open parentheses open parentheses k plus 1 close parentheses plus 1 close parentheses times 2 to the power of open parentheses k plus 1 close parentheses end exponent end fraction end cell row blank equals cell 1 minus fraction numerator 1 over denominator open parentheses k plus 1 close parentheses times 2 to the power of k end fraction plus fraction numerator k plus 3 over denominator open parentheses k plus 1 close parentheses times open parentheses k plus 2 close parentheses times 2 to the power of k times 2 to the power of 1 end fraction end cell row blank equals cell 1 minus fraction numerator 1 over denominator open parentheses k plus 1 close parentheses times 2 to the power of k end fraction times open parentheses 1 minus fraction numerator k plus 3 over denominator open parentheses k plus 2 close parentheses times 2 end fraction close parentheses end cell row blank equals cell 1 minus fraction numerator 1 over denominator open parentheses k plus 1 close parentheses times 2 to the power of k end fraction times open parentheses 1 minus fraction numerator k plus 3 over denominator 2 k plus 4 end fraction close parentheses end cell row blank equals cell 1 minus fraction numerator 1 over denominator open parentheses k plus 1 close parentheses times 2 to the power of k end fraction times open parentheses fraction numerator 2 k plus 4 over denominator 2 k plus 4 end fraction minus fraction numerator k plus 3 over denominator 2 k plus 4 end fraction close parentheses end cell row blank equals cell 1 minus fraction numerator 1 over denominator open parentheses k plus 1 close parentheses times 2 to the power of k end fraction times fraction numerator open parentheses 2 k plus 4 close parentheses minus open parentheses k plus 3 close parentheses over denominator 2 k plus 4 end fraction end cell row blank equals cell 1 minus fraction numerator 1 over denominator open parentheses k plus 1 close parentheses times 2 to the power of k end fraction times fraction numerator k plus 1 over denominator 2 open parentheses k plus 2 close parentheses end fraction end cell row blank equals cell 1 minus fraction numerator 1 over denominator up diagonal strike open parentheses k plus 1 close parentheses end strike times 2 to the power of k end fraction times fraction numerator up diagonal strike k plus 1 end strike over denominator 2 open parentheses k plus 2 close parentheses end fraction end cell row blank equals cell 1 minus 1 over 2 to the power of k times fraction numerator 1 over denominator 2 open parentheses k plus 2 close parentheses end fraction end cell row blank equals cell 1 minus fraction numerator 1 over denominator open parentheses k plus 2 close parentheses times 2 to the power of k plus 1 end exponent end fraction end cell row blank equals cell 1 minus fraction numerator 1 over denominator open parentheses open parentheses k plus 1 close parentheses plus 1 close parentheses times 2 to the power of k plus 1 end exponent end fraction end cell end table

Dapat diperhatikan bahwa ruas kiri sama dengan ruas kanan. Jadi, P subscript k plus 1 end subscript bernilai benar.

Dari penjabaran di atas, didapatkan informasi berikut.

  1. P subscript 1 benar.
  2. Untuk sembarang bilangan asli k, jika P subscript k bernilai benar mengakibatkan P subscript k plus 1 end subscript bernilai benar.

Akibatnya, P subscript n benar untuk setiap bilangan asli n, menurut prinsip induksi matematika.

Dengan demikian, pada proses pembuktian dengan induksi matematika di atas, didapatkan bahwa pernyataan terbukti dengan induksi matematika.

Jadi, jawaban yang tepat adalah D.

0

Roboguru

Roboguru sudah bisa jawab 91.4% pertanyaan dengan benar

Tapi Roboguru masih mau belajar. Menurut kamu pembahasan kali ini sudah membantu, belum?

Membantu

Kurang Membantu

Apakah pembahasan ini membantu?

Belum menemukan yang kamu cari?

Post pertanyaanmu ke Tanya Jawab, yuk

Mau Bertanya

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Ruangguru

Produk Ruangguru

Produk Lainnya

Hubungi Kami

Ikuti Kami

©2021 Ruangguru. All Rights Reserved