Roboguru

Bentuk sederhana dari  adalah ...

Pertanyaan

Bentuk sederhana dari fraction numerator 10 over denominator 4 minus square root of 11 end fraction adalah ...

  1. 8 plus 2 square root of 11 

  2. 8 plus square root of 11 

  3. 8 minus square root of 11 

  4. 8 minus 2 square root of 11 

Pembahasan Soal:

Bentuk sederhana dari fraction numerator 10 over denominator 4 minus square root of 11 end fraction adalah sebagai berikut.

table attributes columnalign right center left columnspacing 0px end attributes row cell fraction numerator 10 over denominator 4 minus square root of 11 end fraction end cell equals cell fraction numerator 10 over denominator 4 minus square root of 11 end fraction cross times fraction numerator 4 plus square root of 11 over denominator 4 plus square root of 11 end fraction end cell row blank equals cell fraction numerator 10 open parentheses 4 plus square root of 11 close parentheses over denominator 16 minus 11 end fraction end cell row blank equals cell fraction numerator 10 open parentheses 4 plus square root of 11 close parentheses over denominator 5 end fraction end cell row blank equals cell 2 open parentheses 4 plus square root of 11 close parentheses end cell row blank equals cell 8 plus 2 square root of 11 end cell end table

Oleh karena itu, jawaban yang tepat adalah A.

Pembahasan terverifikasi oleh Roboguru

Dijawab oleh:

H. Eka

Mahasiswa/Alumni Universitas Pendidikan Indonesia

Terakhir diupdate 05 Juni 2021

Roboguru sudah bisa jawab 91.4% pertanyaan dengan benar

Tapi Roboguru masih mau belajar. Menurut kamu pembahasan kali ini sudah membantu, belum?

Membantu

Kurang Membantu

Apakah pembahasan ini membantu?

Belum menemukan yang kamu cari?

Post pertanyaanmu ke Tanya Jawab, yuk

Mau Bertanya

Pertanyaan yang serupa

Jawablah soal-soal berikut dengan lengkap! Jika nilai , tentukan nilai  dan !

Pembahasan Soal:

Misalkan x equals 2 comma 7777...

Maka

10 x equals 27 comma 7777... bottom enclose space space space space x equals space space 0 comma 7777... space minus end enclose space space 9 x equals 27 space space space space x equals 27 over 9  

Sehingga :

table attributes columnalign right center left columnspacing 0px end attributes row cell 27 over 9 end cell equals cell a over b end cell row 27 equals a row 9 equals b end table

Maka, nilai a adalah 27 dan nilai b adalah 9

Roboguru

Di antara bilangan-bilangan desimal berikut, manakah yang merupakan bilangan rasional!

Pembahasan Soal:

Karena angka desimal bilangan 0 comma 48484848... merupakan angka desimal yang berulang,  maka bilangan 0 comma 48484848... merupakan bilangan rasional.

Jadi, terbukti bahwa bilangan 0 comma 48484848... merupakan bilangan rasional.

Roboguru

Buktikan bahwa bilangan-bilangan berikut adalah bilangan rasional!

Pembahasan Soal:

Misalkan x equals 2 comma 54545454...

Maka

 

100 x equals 254 comma 545454... bottom enclose space space space space space space x equals space space space space 2 comma 545454... space minus end enclose space space 99 x equals 252 space space space space space space x equals 252 over 99  

 

Karena bilangan 2 comma 54545454... dapat dinyatakan dalam bentuk pecahan 252 over 99 maka bilangan 2 comma 54545454... merupakan bilangan rasional.

Jadi, terbukti bahwa bilangan 2 comma 54545454... merupakan bilangan rasional.

Roboguru

Apakah bilangan  merupakan bilangan rasional atau bilangan irasional ? Apabila merupakan bilangan rasional, ubahlah menjadi bentuk pecahan paling sederhana.

Pembahasan Soal:

Ingat kembali, 

Bilangan rasional adalah bilangan yang dapat dinyatakan dalam bentuk :

a over b space dengan space a comma b element of Bilangan space Bulat space dan space b not equal to 0

Bilangan rasional juga dapat dinyatakan dalam bentuk desimal berulang

contoh : 3 comma 929292.... space semicolon space 1 comma 181818....

Sedangkan bilangan irasional dinyatakan dalam bentuk desimal tak berulang

Berdasarkan penjelasan di atas, diperoleh sebagai berikut 

0 comma 101001000100001... merupakan bilangan irasional karena bilangan tersebut termasuk desimal tak berulang (tidak dapat dinyatakan dalam bentuk a over b )
Dengan demikian, 0 comma 101001000100001... merupakan bilangan irasional dan tidak dapat dinyatakan dalam pecahan sederhana.space space

Roboguru

Buktikan bahwa bilangan-bilangan berikut merupakan bilangan rasional! b.

Pembahasan Soal:

Bilangan rasional adalah bilangan yang dapat diubah menjadi pecahan biasa a over b dan apabila bilangan ini diubah ke pecahan desimal, maka angkanya akan berhenti di suatu bilangan tertentu. Apabila tidak berhenti, maka akan membentuk pola pengulangan.

0 comma 99999... merupakan bilangan rasional karena membentuk pola pengulangan.



Jadi, 0 comma 99999... merupakan bilangan rasional.

Roboguru

Roboguru sudah bisa jawab 91.4% pertanyaan dengan benar

Tapi Roboguru masih mau belajar. Menurut kamu pembahasan kali ini sudah membantu, belum?

Membantu

Kurang Membantu

Apakah pembahasan ini membantu?

Belum menemukan yang kamu cari?

Post pertanyaanmu ke Tanya Jawab, yuk

Mau Bertanya

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Ruangguru

Produk Ruangguru

Produk Lainnya

Hubungi Kami

Ikuti Kami

©2021 Ruangguru. All Rights Reserved