5+8+11+...+(3n+2)=1/2(3n²+7n)
n(1) = 3n+2=1/2(3n²+7n)
3(1)+2= 1/2(3(1)²+7(1))
5= 5 (benar)
pk= 5+8+11+...+(3k+2)=1/2(3k²+7k) (benar)
pk+1= 5+8+11+...+(3k+2)+(3(k+1)+2)=1/2(3(k+1)²+7(k+1))
(3k+2)+(3k+5)=1/2(3(k+1)²+7(k+1))
1/2(3k²+7k)+2(3k+5)=1/2(3(k+1)²+7(k+1))
1/2(3k²+7k)+6k+10=1/2(3(k+1)²+7(k+1))
1/2(3k2+13k+10)=1/2(3(k+1)²+7(k+1))
1/2(3k2+6k+3+7k+7)=1/2(3(k+1)²+7(k+1))
1/2(3(k+1)²+7(k+1))=1/2(3(k+1)²+7(k+1)) (terbukti)